K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

a: Xét hình thang ABCD có

M,N lần lượt là trung điểm của CD,BA

=>MN là đường trung bình

=>MN//AD//BC

=>MN//(SAD)

b:

MN//BC

\(MN\subset\left(EMN\right)\)

BC không thuộc (EMN)

Do đó: BC//(EMN)

c: AD//MN

AD không thuộc (EMN)

\(MN\subset\left(EMN\right)\)

Do đó: AD//(EMN)

11 tháng 11 2018

Đáp án D

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

Ta có: Sx là giao tuyến (SAD) và (SBC) sao cho Sx // AD // BC (1)

Có : M, N là trung điểm của AB, CD

Suy ra: MN // AD // BC (2) 

Từ (1)(2) suy ra: MN // Sx.

Xét ΔBCD có M,N lần lượt là trung điểm của CB,CD

=>MN là đường trung bình

=>MN//BD

=>MN//(SBD)

4 tháng 12 2021

4 tháng 12 2021

16 tháng 10 2023

a: ABCD là hình chữ nhật

=>CD//AB

mà AB⊂(SAB) và CD không nằm trong mp(SAB)

nên CD//(SAB)

b: ABCD là hình chữ nhật

=>BC//AD
mà AD⊂(SAD) và BC không nằm trong mp(SAD)

nên BC//(SAD)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

 

a) \(M\) là trung điểm của \(AB\)

\(N\) là trung điểm của \(C{\rm{D}}\)

\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABCD\)

\( \Rightarrow MN\parallel A{\rm{D}}\parallel BC\)

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}MN\parallel BC\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {SBC} \right)\\\left. \begin{array}{l}MN\parallel A{\rm{D}}\\A{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {SA{\rm{D}}} \right)\end{array}\)

b) \(M\) là trung điểm của \(AB\)

\(E\) là trung điểm của \(SA\)

\( \Rightarrow ME\) là đường trung bình của tam giác \(SAB\)

\(\left. \begin{array}{l} \Rightarrow ME\parallel SB\\ME \subset \left( {MNE} \right)\end{array} \right\} \Rightarrow SB\parallel \left( {MNE} \right)\)

Gọi \(O\) là giao điểm của \(AC\) và \(BD\)

\( \Rightarrow O\) là trung điểm của \(AC\) và \(O,M,N\) thẳng hàng

Mà \(E\) là trung điểm của \(SA\)

\( \Rightarrow OE\) là đường trung bình của tam giác \(SAC\)

\(\left. \begin{array}{l} \Rightarrow OE\parallel SC\\OE \subset \left( {MNE} \right)\end{array} \right\} \Rightarrow SC\parallel \left( {MNE} \right)\)

a: AB//CD

Cắt nhau: AB và AC; CD và AC

b: Vì M,N lần lượt thuộc SA,SB

nên MN thuộc mp(SAB)

=>Trong 3 đoạn SA,MN,AB không có 2 đường nào chéo nhau

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


Ta có:MN là đường trung bình của tam giác SAB \(\Rightarrow MN//AB, MN= \frac{1}{2}AB \)

Mà \(\ CD//AB, CD= \frac{1}{2}AB \)

Suy ra: MN//CD, MN = CD.

Từ (1) và (2) suy ra MNCD là hình bình hành

Vậy NC // MD.