K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

1 tháng 1 2017

NV
30 tháng 12 2021

a.

Do M là trung điểm SC, N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAC

\(\Rightarrow MN||AC\)

Mà \(AC\in\left(ABCD\right)\Rightarrow MN||\left(ABCD\right)\)

Gọi O là giao điểm AC và BD \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)

\(S=\left(SAC\right)\cap\left(SBD\right)\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

b.

Trong mp (ABCD), kéo dài AB và CD cắt nhau tại E

Trong mp (SCD), nối EM cắt SD tại F

\(\Rightarrow F=SD\cap\left(MAB\right)\)

NV
30 tháng 12 2021

undefined

1 tháng 7 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O′ = AB ∩ CD, M = AI ∩ SO′

Ta có: M = AI ∩ (SCD)

b) IJ // BC ⇒ IJ // AD ⇒ IJ // (SAD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Đường thẳng qua I song song với SD cắt BD tại K.

Do Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên OB < OD. Do đó điểm K thuộc đoạn OD.

Qua K, kẻ đường thẳng song song với AC cắt DA, DC, BA lần lượt tại E, F, P.

Gọi R = IP ∩ SA. Kéo dài PI cắt SO’ tại N

Gọi L = NF ∩ SC

Ta có thiết diện là ngũ giác IREFL.

a: Ta có: CD//AB

AB\(\subset\)(SAB)

CD không nằm trong mp(SAB)

Do đó: CD//(SAB)

b: Xét ΔSBD có

M,N lần lượt là trung điểm của SB,SD

=>MN là đường trung bình của ΔSBD

=>MN//BD

Xét (CMN) và (ABCD) có

\(C\in\left(CMN\right)\cap\left(ABCD\right)\)

MN//BD

Do đó: (CMN) giao (ABCD)=xy, xy đi qua C và xy//MN//BD

 

1 tháng 12 2018

Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).

Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.

Chọn C. 

NV
4 tháng 1

a.

Do M là trung điểm SA, O là trung điểm AC

\(\Rightarrow OM\) là đường trung bình tam giác SAC \(\Rightarrow OM||SC\Rightarrow OM||\left(SBC\right)\) (1)

N là trung điểm CD, O là trung điểm AC \(\Rightarrow ON\) là đường trung bình ACD

\(\Rightarrow ON||AD\Rightarrow ON||BC\Rightarrow ON||\left(SBC\right)\) (2)

Mà \(ON\cap OM=O\)  ; \(OM;ON\in\left(OMN\right)\) (3)

(1);(2);(3) \(\Rightarrow\left(OMN\right)||\left(SBC\right)\)

b.

J cách đều AB, CD \(\Rightarrow J\) thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O \(\Rightarrow OI\) là đường trung bình tam giác SBD \(\Rightarrow OI||SB\Rightarrow OI||\left(SAB\right)\)

Hay \(IJ||\left(SAB\right)\)

- Nếu J không trùng O, ta có \(\left\{{}\begin{matrix}IO||SB\left(đtb\right)\Rightarrow IO||\left(SAB\right)\\d||AB\Rightarrow IJ||AB\Rightarrow OJ||\left(SAB\right)\end{matrix}\right.\)

\(\Rightarrow\left(OIJ\right)||\left(SAB\right)\Rightarrow IJ||\left(SAB\right)\)

a.

Do M là trung điểm SA, O là trung điểm AC

⇒�� là đường trung bình tam giác SAC ⇒��∣∣��⇒��∣∣(���) (1)

N là trung điểm CD, O là trung điểm AC ⇒�� là đường trung bình ACD

⇒��∣∣��⇒��∣∣��⇒��∣∣(���) (2)

Mà ��∩��=�  ; ��;��∈(���) (3)

(1);(2);(3) ⇒(���)∣∣(���)

b.

J cách đều AB, CD ⇒� thuộc đường thẳng d qua O và song song AB, CD

- Nếu J trùng O ⇒�� là đường trung bình tam giác SBD ⇒��∣∣��⇒��∣∣(���)

Hay ��∣∣(���)

- Nếu J không trùng O, ta có {��∣∣��(đ��)⇒��∣∣(���)�∣∣��⇒��∣∣��⇒��∣∣(���)

⇒(���)∣∣(���)⇒��∣∣(���)

4 tháng 12 2021

4 tháng 12 2021