Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi O la trung diem AC va HG
cm tam giac HAO = tam giac COG ( c-g-c) --> HO=OG--> O la trung diem HG
xet hbh ABCD : AC va BD la hai duong cheo cat nhau tai trung diem moi duong , va O la trung diem AC
--> O la trung diem BD
ma O la trung diem HG
nen AC,GH,BD dong quy tai O
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Tự vẽ hình.
Nối AG ; CH.
Vì ABCD là hình bình hành nên AD // BC;
AC và BD cắt nhau tại tđ mỗi đường (1)
_ AD // BC => g HAC = g GCA (so le trog)
=> AH // CG mà AH = CG
=> AHCG là hình bình hành
=> GH và AC cắt nhau tại tđ mỗi đường (2)
Từ (1) và (2) => GH, AC và BD đồng quy.
Xét tứ giác AECF có
AE//CF
AE=CF
=>AECF là hình bình hành
=>AC cắt EF tại trung điểm của mỗi đườg(1)
Xét tứ giác BGDH có
BG//DH
BG=DH
=>BGDH là hình bình hành
=>BD cắt GH tại trung điểm của mỗi đường(2)
ABCD là hìnhbình hành
nên AC cắt BD tại trung điểm của mỗi đường(3)
Từ (1), (2) , (3) suy ra AC,BD,GH,EF đồng quy tại trung điểm của mỗi đường
=>GH cắt EF tại trung điểm của mỗi đường
Xét tứ giác EHFG có
GH cắt EF tại trung điểm của mỗi đường
=>EHFG là hình bình hành
Lời giải:
\(G\in BC, H\in AD\) mà $BC\parallel AD$ (dp $ABCD$ là hình bình hành)
\(\Rightarrow AH\parallel CG\)
Xét tứ giác $AHCG$ có cặp cạnh đối $AH,CG$ vừa song song vừa bằng nhau nên $AHCG$ là hình bình hành.
\(\Rightarrow AC,HG\) cắt nhau tại trung điểm mỗi đường $(1)$
$ABCD$ là hình bình hành nên $AC,BD$ cắt nhau tại trung điểm của mỗi đường $(2)$
Từ $(1);(2)$ suy ra $AC,HG, BD$ cắt nhau tại trung điểm của $AC$, cũng là trung điểm của mỗi đường đó. (đpcm)
a: Xét ΔEBF và ΔGDH có
EB=GD
góc B=góc D
BF=DH
=>ΔEBF=ΔGDH
=>EF=gh
Xét ΔEAH và ΔGCF có
EA=GC
góc A=góc C
AH=CF
=>ΔEAH=ΔGCF
=>EH=GF
mà EF=GH
nên EHGF là hình bình hành
b: Xét tứ giác AECG có
AE//CG
AE=CG
=>AECG là hbh
=>AC cắt EG tại trung điểm của mỗi đường(1)
EFGH là hbh
=>EG cắt FH tại trung điểm của mỗi đường(2)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(3)
Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy
Gọi O là trung điểm của AC và GH
Chứng minh tam giác HAO = tam giác COG --> HO = OG --> O là trung điểm của HG
Xét hình bình hành ABCD: AC và BD là hai đường chéo cắt nhau tại trung điểm mỗi đường và O là trung điểm của AC
--> O là trung điểm của BD
mà O là trung điểm của HG
Nên AC ; GH ; BD đồng quy