Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M F N 1 2 3
a, Ta có: CE _|_ AB (gt)
MN _|_ CE (gt)
=> MN // AB
Mà AB // CD (tính chất HBH)
=> MN // CD
=> MNCD là HBH (1)
Lại có: BC = 2AB
Mà AD = BC (t/c HBH), AB = CD (t/c HBH)
=> AD = 2CD
=> \(CD=\frac{AD}{2}\)
Mà \(MD=\frac{AD}{2}\) (M là trung điểm của AD)
=> MD = CD (2)
Từ (1) và (2) => MNCD là hình thoi
b, Vì MNCD là hình thoi => MD = CN
AD = BC (t/c hình HBH)
=>\(CN=\frac{BC}{2}\) hay CN = BN
Xét t/g BCE có: CN = BN (cmt), BE // NF (câu a)
=> EF = FC
=> MF là đường trung tuyến của t.g CME
Mà MF cũng là đường cao của t/g CME
=> t/g CME cân tại M
c, Vì AB // MN (câu a) => góc BAD = góc NMD (đồng vị) (3)
Ta có: góc NMD = góc M1 + góc M2
Vì t/g CME cân tại M (câu b) => MF là tia p/g của góc CME => góc M2 = góc M3
MNCD là hình thoi (câu a) => góc M1 = M2
Do đó góc M1 = góc M2 = góc M3
=>góc NMD = \(2\widehat{M_3}\) (4)
Mà góc M3 = góc AEM (AE//MF;so le trong) (5)
Từ (3),(4),(5) => góc BAD = 2 góc AEM
P/s: hình k đc chuẩn
a, là hcn
câu b
từ câu a => hf // và = ae
mà hf = fm
=> fm // và = ae
=> đpcm
câu c
tam giác bnh có be vừa là dcao vừa trung tuyến
=> tam giác bnh cân b
=> bn=bh (1)
cmtt => ch=cm (2)
mà bc= bh+ch
=> bc^2 = (bh+ch+)^2
= bh^2 + 2 bh.ch +ch^2 (3)
(1) (2) (3) => ... (đpcm)
lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^
a, H là trực tâm của \(\Delta ABC\left(gt\right)\Rightarrow BH\perp AC,CH\perp AB\)
Mà \(CK\perp AC,BK\perp AB\left(gt\right)\)
\(\Rightarrow BH//CK,CH//BK\)
\(\Rightarrow BHCK\)là hình bình hành.
b, Hình bình hành BHCK có 2 đường chéo BC,HK cắt nhau tại O
\(\Rightarrow O\)là trung điểm của HK.
ON là đường trung bình của \(\Delta AHK\Rightarrow ON=\frac{1}{2}AH\Rightarrow AH=2ON\)
c, Tứ giác ABCK có: \(\widehat{BAC}+\widehat{ABK}+\widehat{ACK}+\widehat{BKC}=360^0\)
\(\Rightarrow60^0+90^0+90^0+\widehat{BKC}=360^0\Rightarrow\widehat{BKC}=150^0\)
BH//CK(gt) \(\Rightarrow\widehat{BKC}+\widehat{HCK}=180^0\)
\(\Rightarrow150^0+\widehat{HCK}=180^0\Rightarrow\widehat{HCK}=30^0\)
BHCK là hình bình hành (cmt) nên \(\hept{\begin{cases}\widehat{BHC}=\widehat{BKC}=150^0\\\widehat{HBK}=\widehat{HCK}=30^0\end{cases}}\) (tính chất hbh)
ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE)
và MD//NC (AD//BC)
=> MNCD là hình bình hành (1)
MD=AD/2
MN=AB=AD/2
nên MD=MN (2)
từ (1)(2) => MNCD là hình thoi.
B) do MN//AB//CD(câu a)
và M là trung điểm AD
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC)
=> tam giác MEC cân tại M
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC
=> MF là đường phân giác của tam giác MEC
=> góc EMF=góc FMC
góc AEM=góc EMF(AB//MN)
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác)
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD
=> 2AEM=FMC+CMD
M A B C D E O I K 1 2
a) Xét tứ giác ADME có:
\(MD//AE\left(MD//AC\right)\)
\(ME//AD\left(ME//AB\right)\)
\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )
b) Vì ADME là hình bình hành ( câu a )
\(\Rightarrow DE\)cắt \(AM\)tại trung điểm
Mà O là trung điểm DE
\(\Rightarrow\)O là trung điểm AM
\(\Rightarrow\)A,O,M thẳng hàng (đpcm)
c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến
\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)
\(\Rightarrow\Delta AOI\)cân tại O
\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)
Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )
\(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)
CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)
Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)
Vậy \(\widehat{IOK}=120^o\)
#Bảo___