Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE)
và MD//NC (AD//BC)
=> MNCD là hình bình hành (1)
MD=AD/2
MN=AB=AD/2
nên MD=MN (2)
từ (1)(2) => MNCD là hình thoi.
B) do MN//AB//CD(câu a)
và M là trung điểm AD
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC)
=> tam giác MEC cân tại M
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC
=> MF là đường phân giác của tam giác MEC
=> góc EMF=góc FMC
góc AEM=góc EMF(AB//MN)
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác)
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD
=> 2AEM=FMC+CMD
A M D C B E F N
Giải
a) Ta có CE \(\perp\) AB, MF \(\perp\) CE (gt)
Suy ra MF // AB // CD
Nên MNCD là hình bình hành
Lại có MD = \(\frac{1}{2}\)AD = AB = CD
Vậy MNCD là hình thoi
b) Từ chứng minh trên ta có: CN = CD = \(\frac{1}{2}\)BC; NF // BE
nên EF = FC
\(\Delta\)EMC có MF là đường cao vừa là đường trung tuyến nên là tam giác cân
Vậy \(\Delta\)EMC cân tại M
c) Ta có: góc BAD = góc NMD (đồng vị) (1)
mà góc NMD = góc M1 + góc M2 = 2 lần góc M3 (2)
và góc M3 = góc AEM (so le trong) (3)
Từ (1), (2), (3) suy ra: góc BAD = 2 lần góc AEM
Ta có : MN\(\perp\)EC
AB\(\perp\)EC
=> AB // MN
Vì ABCD là hình bình hành
=> AD = BC
=> AB // CD
=> AB // CD // MN
Xét tứ giác AECD có :
M là trung điểm AD
MF // AE
=> F là trung điểm EC
Xét \(\Delta CEB\)có :
F là trung điểm EC
FN// EB
=> N là trung điểm BC
Ta có : AM = MD = \(\frac{AD}{2}\)
BN = NC = \(\frac{BC}{2}\)
=> MD = NC
Xét tứ giác MNCD có :
MN // DC
MD = NC
=>MNCD là hình bình hành
Vì F là trung điểm EC
=> EF = FC
Xét \(\Delta MEC\)có :
MF \(\perp\)EC
EF = FC
=> \(\Delta MEC\)cân tại M
a, Ta có : CE vuông góc với AB
Mà CE đi qua MN và vuông góc với MN
=> AB//MN
Mà : AB//DC
=>MN//DC
Xét tứ giác MNCD có :
MN//DC (cmt)
MD//NC
=> MNCD là hình bình hành (có các cạnh đối bằng nhau)
b,Xét tam giác EBC có :
BN=NC ( MN//DC và AM=MD => MN là đtb của tứ giác ABCD => BN=NC)
Xin lỗi cho mình làm tiếp theo nha bạn .
Và : FN//EB (MN//AB)
=> FN là đtb của tam giác EBC
=> EF=FC
* Ta lại xét tam giác MEF và tam giác MFC có :
MF cạnh chung
F=90
EF=FC (cmt)
=> tg MEF=tg MFC (cgc)
=> ME=MC
=> tam giác MEC là tam giác cân
c, mk không biết
nhớ k nhé
A B C D E M F N 1 2 3
a, Ta có: CE _|_ AB (gt)
MN _|_ CE (gt)
=> MN // AB
Mà AB // CD (tính chất HBH)
=> MN // CD
=> MNCD là HBH (1)
Lại có: BC = 2AB
Mà AD = BC (t/c HBH), AB = CD (t/c HBH)
=> AD = 2CD
=> \(CD=\frac{AD}{2}\)
Mà \(MD=\frac{AD}{2}\) (M là trung điểm của AD)
=> MD = CD (2)
Từ (1) và (2) => MNCD là hình thoi
b, Vì MNCD là hình thoi => MD = CN
AD = BC (t/c hình HBH)
=>\(CN=\frac{BC}{2}\) hay CN = BN
Xét t/g BCE có: CN = BN (cmt), BE // NF (câu a)
=> EF = FC
=> MF là đường trung tuyến của t.g CME
Mà MF cũng là đường cao của t/g CME
=> t/g CME cân tại M
c, Vì AB // MN (câu a) => góc BAD = góc NMD (đồng vị) (3)
Ta có: góc NMD = góc M1 + góc M2
Vì t/g CME cân tại M (câu b) => MF là tia p/g của góc CME => góc M2 = góc M3
MNCD là hình thoi (câu a) => góc M1 = M2
Do đó góc M1 = góc M2 = góc M3
=>góc NMD = \(2\widehat{M_3}\) (4)
Mà góc M3 = góc AEM (AE//MF;so le trong) (5)
Từ (3),(4),(5) => góc BAD = 2 góc AEM
P/s: hình k đc chuẩn