Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha!
a, ta có:
Góc A=Góc D=90°(gt)<=>AD_|_DC
BH_|_DC
=>BH//AD
ABCD là hình thang nên AB//CD
=>Tứ giác ABHD là hình chữ nhật.
b,Do ABHD là hình chữ nhật, nên:
AB=HD=3cm
CD=6cm=>HC=6-3=3 cm
Do BH_|_CD(gt)=>góc BHC=90°
=>tam giác BHC vuông tại H
Xét tam giác vuông BHC:
Theo định lý pitago trong tam giác vuông thì:
BC^2=HC^2+BH^2
=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16
=>BH=4 cm
=>Diện tích hình chữ nhật ABHD là:
3.4=12 cm2
c,Do M là M là trung điểm của BC nên:
MB=MC=BC/2=5/2=2,5cm
Do N đối xứng với M qua E (gt)nên:
EM=EN
Đường chéo AH^2=AD^2+DH^2=25cm
=>AH=5cm=>EH=5/2=2,5cm
=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm
EM+EN=2AB=6 cm
AB//HC=3cm;BC//AH=5cm
=>NM//DC=6cm
==> Tứ giác NMCD là hình bình hành
d,bạn tự chứng minh (khoai quá)
a)xét tứ giác ADME có
CÂB =AÊM=góc ADM=900
=>ADME là hcn
b)vì MA là đg trung tuyến nên MA=MC=MB
xét tam giác CMA có
CM=MA(cmt)
CÊM=AÊM=900
EM là cạnh chung
=>...(cạnh huyền-cạnh góc vuông)
=>CE=EA
mà EA=MD(EAMD là hcn) nên CE=MD (1)
ta có MA=MC(cmt)
mà MA=ED(EAMD là hcn)
=>MC=ED (2)
xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)
=>CMED là hbh
c)
xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID
xét tứ giác MKDI có
KM=KD(K là giao điểm hai dg chéo của hcn)
KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)
MI=ID(cmt)
=>KMID là thoi
mà KI là đg chéo của góc I nên KI cũng là p/g của góc I
(ck hk tốt nhé)
a)Ta có :BH song song với DC (cùng vuông góc với AC).
HC song song DB (cùng vuông góc với AB).
=> BDHC là hình bình hành.
b)Vì M là giao điểm của 2 đường chéo của hình bình hành BDHC.
=>M là trung điểm của HC.
mà N là trung điểm của AD.
=>MN là đường trung bình của tam giác AHD.
=>MN song song với AH mà AH vuông góc với BC.
=>MN vuông góc với BC.
MN là đường trung bình của tam giác AHC.
=>MN=1/2 HA.
hay AH = 2MN.
a, H là trực tâm của \(\Delta ABC\left(gt\right)\Rightarrow BH\perp AC,CH\perp AB\)
Mà \(CK\perp AC,BK\perp AB\left(gt\right)\)
\(\Rightarrow BH//CK,CH//BK\)
\(\Rightarrow BHCK\)là hình bình hành.
b, Hình bình hành BHCK có 2 đường chéo BC,HK cắt nhau tại O
\(\Rightarrow O\)là trung điểm của HK.
ON là đường trung bình của \(\Delta AHK\Rightarrow ON=\frac{1}{2}AH\Rightarrow AH=2ON\)
c, Tứ giác ABCK có: \(\widehat{BAC}+\widehat{ABK}+\widehat{ACK}+\widehat{BKC}=360^0\)
\(\Rightarrow60^0+90^0+90^0+\widehat{BKC}=360^0\Rightarrow\widehat{BKC}=150^0\)
BH//CK(gt) \(\Rightarrow\widehat{BKC}+\widehat{HCK}=180^0\)
\(\Rightarrow150^0+\widehat{HCK}=180^0\Rightarrow\widehat{HCK}=30^0\)
BHCK là hình bình hành (cmt) nên \(\hept{\begin{cases}\widehat{BHC}=\widehat{BKC}=150^0\\\widehat{HBK}=\widehat{HCK}=30^0\end{cases}}\) (tính chất hbh)