\(M\in AC\); \(BM\times DC\equiv E;BM\time...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

A B D C M E F

Ta có: \(\frac{1}{BE}+\frac{1}{BF}=\frac{1}{BM}\)

\(\Leftrightarrow BF.BM+BE.BM=BE.BF\)

\(\Leftrightarrow BE.BM=BE.BF-BF.BM\)

\(\Leftrightarrow BE.BM=BF.ME\)

\(\Leftrightarrow\frac{BE}{BF}=\frac{ME}{MB}\)

\(\Leftrightarrow\frac{BF+FE}{BE}=\frac{EC}{AB}\)

\(\Leftrightarrow\frac{BF+FE}{BE}=\frac{DC+ED}{AB}\)

\(\Leftrightarrow1+\frac{FE}{BE}=1+\frac{ED}{AB}\)

\(\Leftrightarrow\frac{FE}{BE}=\frac{ED}{AB}\)

(Đúng, theo hệ quả của định lý Talet)

Vậy nên   \(\frac{1}{BE}+\frac{1}{BF}=\frac{1}{BM}\)  (ĐPCM)

26 tháng 1 2018

A B C D F E M

vì ABCD là hbh

=> AB//DC => AB//EC

AD//BC => AF//BC

vì AB//EC . Theo đl Ta-lét ta có

\(\dfrac{BM}{ME}=\dfrac{AM}{MC}\) (1)

vì AF // BC theo đl ra-lét ta có

\(\dfrac{MF}{MB}=\dfrac{AM}{MC}\) (2)

từ (1) và (2)

=>\(\dfrac{BM}{ME}=\dfrac{MF}{MB}\)

=> BM2=ME.MF (đpcm)

29 tháng 1 2021

a/ Xét tg ADM và tg EDB

Bx//AC \(\Rightarrow\widehat{DAC}=\widehat{DEB}\) (góc so le trong)

\(\widehat{ADM}=\widehat{BDE}\) (góc đối đỉnh)

=> Xét tg ADM đồng dạng tg EDB (g.g.g) \(\Rightarrow\frac{BD}{DM}=\frac{BE}{AM}=\frac{BE}{\frac{AC}{2}}=\frac{1}{2}\Rightarrow\frac{BE}{AC}=\frac{1}{4}\)

b/ Xét tg BKE và tg AKC có

\(\widehat{AKC}=\widehat{BKE}\) (góc đối dỉnh)

Bx//AC \(\Rightarrow\widehat{KAC}=\widehat{KEB}\) (góc so le trong)

=> tg BKE đồng dạng tg AKC (g.g.g) \(\Rightarrow\frac{BE}{AC}=\frac{BK}{KC}=\frac{1}{4}\Rightarrow\frac{BK}{AC}=\frac{1}{5}\left(dpcm\right)\)

8 tháng 2 2022

jjjjjjjjjj