Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin phép ad cho em tách ạ,nguyên 1 câu khá là dài,hihi
Xét tứ giác AMCN có AM song song và bằng CN nên nó là hình bình hành.
Suy ra AN song song và bằng MC.
Xét tam giác DMH và tam giác BNI có:
DM = BN
\(\widehat{MDH}=\widehat{NBI}\) (So le trong)
\(\widehat{DMH}=\widehat{BNI}\) (Cùng bằng góc \(\widehat{HCN}\))
\(\Rightarrow\Delta DMH=\Delta BNI\left(g-c-g\right)\)
\(\Rightarrow\) IN = HM
Vậy nên AI = HC.
Từ đó ta có AI = AN - IC = MC - MH = HC.
Xét tứ giác AICH có AH song song và bằng IC nên AICH là hình bình hành. Suy ra AH = IC.
Ta thấy ngay trong tam giác DIC, HF là đường trung bình. Vậy thì HF song song và bằng một nửa IC. Tương tự EI song song và bằng một nửa AH. Vậy nên EIFH là hình bình hành.
Để hình bình hành EIFH là hình chữ nhật thì EF = HI.
Xét tam giác BHC có N là trung điểm BC, IN // HC nên IN là đường trung bình của tam giác. Vậy thì IB = HI.
Tương tự HI = DH.
Từ đó ta có IH = BD/3
Mà EF = BC nên để EIFH là hình chữ nhật thì hình bình hành ABCD có BD = 3BC.
Minh chi lam theo suy nghi thoi nhe:
a)Xet hinh binh hanh ABCD co:
AB = DC va AB song song voi DC (t/c hinh binh hanh)
ma M la trung diem AB, N la trung diem DC(gt)
=>AM=DN va AM song song voi DN
=>AMND la hinh binh hanh (t/g co 1 cap canh doi song song va bang nhau)
Ta co: AB=2AD(gt)
ma M la trung diem AD(gt)
=>AM=AD
=>AMND la hinh thoi (hinh binh hanh co 2 canh ke bang nhau)
a, Do I là trung điểm của DC
suy ra: IC=1/2DC
Mà AB=1/2DC nên AB=CI(*)
Ta có: AB//CD
MÀ I nằm trên cạnh DC
suy ra AB//IC(**)
Từ (*);(**) suy ra tứ giác ABCI là hình bình hành
b, Chứng minh tương tự ta cũng có tứ giác ABID là hình bình hành.
c, Chứng minh tam giác bằng nhau suy ra IA=IC còn cách còn lại bạn tự làm nha dễ đấy
bạn làm hộ mik lốt câu c đi.Mik chứng minh đc IA=IC rồi nhưng không biết làm gì nữa
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED
a: Xét tứ giác AMCn có
AM//Cn
AM=CN
=>AMCN là hình bình hành
b; Xét ΔBAE có
M là trung điểm của BA
MF//AE
=>F là trung điểm của BE
=>BF=FE
Xét ΔDFC có
N là trung điểm của DC
NE//FC
=>E là trung điểm của DF
=>DE=EF=FB