K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

Minh chi lam theo suy nghi thoi nhe:

a)Xet hinh binh hanh ABCD co:

AB = DC va AB song song voi DC (t/c hinh binh hanh)

ma M la trung diem  AB, N la trung diem DC(gt)

=>AM=DN va AM song song voi DN

=>AMND la hinh binh hanh (t/g co 1 cap canh doi song song va bang nhau)

Ta co: AB=2AD(gt)

ma M la trung diem AD(gt)

=>AM=AD

=>AMND la hinh thoi (hinh binh hanh co 2 canh ke bang nhau)

6 tháng 6

File: undefined chắc các bạn cũng thấy câu a) và b) ạ. Mình làm thử có thiếu sót mong bổ xung ạ.

C) gọi giao điểm của AN và CD là O 

Xét ∆ABN và ∆OCN, ta có:

NC=NB( giả thiết)

NOC = NAB ( góc so le trong)

CNO = BNA ( đối đỉnh )

=> ∆ ABN = ∆OCN ( g-c-g)

=> CO=CA ( cặp cạnh tương ứng bằng nhau)

Mà tứ giác ABCD là hình vuông 

=> AB=CD=CO hoặc CD =CO

Vì ∆APM là tam giác vuông tại P 

=> Gốc DPN =90°

Xét ∆ vuông DPO, ta có ( vì gốc DPN =90° cmt)

Ta có CD=CO ( cmt)

DPO =90°

Trong tam giác vuông đường trung tuyến ứng với cạnh huyền 

=> DC=PC=CO

=> ∆ DPC cân tại C ( vì CP= CD) ( đpcm)

 

a: Xét tứ giác AMCN có

AM//CN

AM=CN

=>AMCN là hình bình hành

Xét tứ giác AMND có

AM//ND

AM=ND

AM=AD

=>AMND là hình thoi

b: AMND là hình thoi

=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N

Xét tứ giác MBCN có

MB//CN

MB=CN

MB=BC

=>MBCN là hình thoi

=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN

Xét ΔMDC có

MN là trung tuyến

MN=DC/2

=>ΔMDC vuông tại M

Xét tứ giác MINK có

góc MIN=góc MKN=góc IMK=90 độ

=>MINK là hình chữ nhật

c: Xét ΔMDC có MI/MD=MK/MC

nên IK//DC

22 tháng 9 2019

bn tự kẻ hình nha!

a) ta có: AB = DC ( ACBD là hình bình hành)

----> BM = CN ( = 1/2. AB = 1/2 . DC)

mà BM // CN

-----> BMNC là h.b.h

b) xét tam giác AMD và tam giác CNB

có: AM = CN ( = 1/2.AB = 1/2.CD)

AD = BC (gt)

^DAM = ^NCB (gt)

-----> tg AMD = tg CNB (c-g-c)

-----> DM = NB ( 2 cạnh t/ ư)

c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK

bài làm

Gọi AC cắt DB tại E

ta có: tg AMD = tg CNB (cmt)

-----> ^AMD = ^CNB

mà ^AMD = ^MDN ( AB//DC)

-----> ^CNB = ^MDN

mà ^CNB, ^MDN nằm ở vị trí đồng vị 

-----> DM// BN

và DM = BN (pb)

-----> DMBN là h.b.h

-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)

tương tự  bn cx chứng minh: MINK là h.b.h   ( MI = NK = 1/2.DM = 1/2.BN)

-----> MN cắt IK tại E

------------> AC,BD, MN,IK đồng quy tại E

14 tháng 11 2022

a: Sửa đề; AMND

Xét tứ giác AMND có

AM//ND

AM=ND

AM=AD

Do đó: AMND là hình thoi

=>AN vuông góc với MD tại P

b: Xét tứ giác MBCN có

MB//CN

MB=CN

MB=BC

Do đó: MBCN là hình thoi

=>MC vuông góc với BN tại Q

Xét ΔMDC có

MN là đường trung tuyến

MN=CD/2

Do đó: ΔMDC vuông tại M

Xét tứ giác MPNQ có

góc MPN=góc MQN=góc PMQ=90 độ

nên MPNQ là hình chữ nhật

Bạn ơi, đề câu a sai nhé ! Mình đọc không có điểm I nha !

25 tháng 10 2018

cccccccccccccccccccccccccccccccuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttttttttttttttttt