Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
File: undefined chắc các bạn cũng thấy câu a) và b) ạ. Mình làm thử có thiếu sót mong bổ xung ạ.
C) gọi giao điểm của AN và CD là O
Xét ∆ABN và ∆OCN, ta có:
NC=NB( giả thiết)
NOC = NAB ( góc so le trong)
CNO = BNA ( đối đỉnh )
=> ∆ ABN = ∆OCN ( g-c-g)
=> CO=CA ( cặp cạnh tương ứng bằng nhau)
Mà tứ giác ABCD là hình vuông
=> AB=CD=CO hoặc CD =CO
Vì ∆APM là tam giác vuông tại P
=> Gốc DPN =90°
Xét ∆ vuông DPO, ta có ( vì gốc DPN =90° cmt)
Ta có CD=CO ( cmt)
DPO =90°
Trong tam giác vuông đường trung tuyến ứng với cạnh huyền
=> DC=PC=CO
=> ∆ DPC cân tại C ( vì CP= CD) ( đpcm)
a: Xét tứ giác AMCN có
AM//CN
AM=CN
=>AMCN là hình bình hành
Xét tứ giác AMND có
AM//ND
AM=ND
AM=AD
=>AMND là hình thoi
b: AMND là hình thoi
=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N
Xét tứ giác MBCN có
MB//CN
MB=CN
MB=BC
=>MBCN là hình thoi
=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN
Xét ΔMDC có
MN là trung tuyến
MN=DC/2
=>ΔMDC vuông tại M
Xét tứ giác MINK có
góc MIN=góc MKN=góc IMK=90 độ
=>MINK là hình chữ nhật
c: Xét ΔMDC có MI/MD=MK/MC
nên IK//DC
bn tự kẻ hình nha!
a) ta có: AB = DC ( ACBD là hình bình hành)
----> BM = CN ( = 1/2. AB = 1/2 . DC)
mà BM // CN
-----> BMNC là h.b.h
b) xét tam giác AMD và tam giác CNB
có: AM = CN ( = 1/2.AB = 1/2.CD)
AD = BC (gt)
^DAM = ^NCB (gt)
-----> tg AMD = tg CNB (c-g-c)
-----> DM = NB ( 2 cạnh t/ ư)
c) AN cắt DM tại I, MC cắt BN tại K. chứng minh : AC,BD,MN,IK
bài làm
Gọi AC cắt DB tại E
ta có: tg AMD = tg CNB (cmt)
-----> ^AMD = ^CNB
mà ^AMD = ^MDN ( AB//DC)
-----> ^CNB = ^MDN
mà ^CNB, ^MDN nằm ở vị trí đồng vị
-----> DM// BN
và DM = BN (pb)
-----> DMBN là h.b.h
-------> BD cắt MN tại E ( do 2 đường chéo của h.b.h cắt nhau tại trung điểm của mỗi đường)
tương tự bn cx chứng minh: MINK là h.b.h ( MI = NK = 1/2.DM = 1/2.BN)
-----> MN cắt IK tại E
------------> AC,BD, MN,IK đồng quy tại E
a: Sửa đề; AMND
Xét tứ giác AMND có
AM//ND
AM=ND
AM=AD
Do đó: AMND là hình thoi
=>AN vuông góc với MD tại P
b: Xét tứ giác MBCN có
MB//CN
MB=CN
MB=BC
Do đó: MBCN là hình thoi
=>MC vuông góc với BN tại Q
Xét ΔMDC có
MN là đường trung tuyến
MN=CD/2
Do đó: ΔMDC vuông tại M
Xét tứ giác MPNQ có
góc MPN=góc MQN=góc PMQ=90 độ
nên MPNQ là hình chữ nhật
Bạn ơi, đề câu a sai nhé ! Mình đọc không có điểm I nha !
cccccccccccccccccccccccccccccccuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttttttttttttttttt
Minh chi lam theo suy nghi thoi nhe:
a)Xet hinh binh hanh ABCD co:
AB = DC va AB song song voi DC (t/c hinh binh hanh)
ma M la trung diem AB, N la trung diem DC(gt)
=>AM=DN va AM song song voi DN
=>AMND la hinh binh hanh (t/g co 1 cap canh doi song song va bang nhau)
Ta co: AB=2AD(gt)
ma M la trung diem AD(gt)
=>AM=AD
=>AMND la hinh thoi (hinh binh hanh co 2 canh ke bang nhau)