K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2021

Ko nên ko nên

26 tháng 12 2023

a: ta có:ABCD là hình bình hành

=>AB//CD và AB=CD

Ta có: AB//CD

C\(\in\)DE

Do đó: AB//CE

Ta có: AB=CD

CD=CE

Do đó: AB=CE

Xét tứ giác ABEC có

AB//EC

AB=EC

Do đó: ABEC là hình bình hành

b: Ta có: ABCD là hình chữ nhật

=>AC=BD và AC cắt BD tại trung điểm của mỗi đường

=>M là trung điểm chung của BD và AC

Ta có: BD=AC

AC=BE(ABEC là hình bình hành)

Do đó: BD=BE

=>\(\widehat{BDE}=\widehat{BED}\)

Xét ΔBDE có

M,N lần lượt là trung điểm của BD,BE

=>MN là đường trung bình của ΔBDE

=>MN//DE và MN=1/2DE

Xét tứ giác DMNE có MN//DE

nên DMNE là hình thang

Hình thang DMNE có \(\widehat{MDE}=\widehat{NED}\)

nên DMNE là hình thang cân

c: Ta có: MN//DE

BC\(\perp\)DE tại C

Do đó:BC\(\perp\)MN

Xét ΔBDE có

C,M lần lượt là trung điểm của DE,DB

=>CM là đường trung bình của ΔBDE

=>CM//BE và CM=BE/2

Ta có: CM//BE

N\(\in\)BE

Do đó: CM//BN

Ta có: CM=BE/2

BN=BE/2

Do đó: CM=BN

Xét tứ giác BMCN có

CM//BN

CM=BN

Do đó: BMCN là hình bình hành

Hình bình hành BMCN có BC\(\perp\)MN

nên BMCN là hình thoi

d: F đối xứng E qua B

=>B là trung điểmcủa FE

Xét ΔFDE có

DB là đường trung tuyến

DB=FE/2

Do đó: ΔFDE vuông tại D

=>FD\(\perp\)DE

mà AD\(\perp\)DE

và FD,AD có điểm chung là D

nên F,A,D thẳng hàng

Xét ΔFDE có

B là trung điểm của FE

BA//DE

Do đó: A là trung điểm của FD

Ta có: BA\(\perp\)FD tại A

A là trung điểm của FD

Do đó: BA là đường trung trực của FD

=>F đối xứng D qua AB

23 tháng 10 2019

bài 1 . c) dễ dàng chứng minh tam giác DMA = tam giác DME (2 cạnh góc vuông)  .Ta đc DA=DE , mà AD =BC nên BC = DC 

 Suy ra : tam giác AME = tam giác NBC ( cạnh huyền-cạnh góc vuông )  .( 1) 

         Tam giác MAN và tam giác EMC có : AN song song với MC nên góc EMC = góc MAN  mà AN=MC(ANCM là hbh) , ME=MA nên 2 tam giác này bằng nhau (c.g.c) ;Suy ra góc M= góc e suy ra EC// MN (2) 

Từ (1) và (2) suy ra là htc 

23 tháng 10 2019

caau1 d) dựa vào tính chất 2 đường chéo = nhau song chứng minh từ từ là ra bởi đã có góc E=C= 90 độ

18 tháng 8 2018

A B C D O H E

Lấy giao điểm của AE với BD là H. Vẽ O là giao điểm của 2 đường chéo AC và BD.

Có ngay O là trung điểm AC (Theo t/c hình bình hành)

Thấy A và E đối xứng trục qua BD; AE cắt BD ở H

Nên ta có: H là trung điểm AE và AE vuông góc BD tại H.

Trong \(\Delta\)AEC có: H là trung điểm của AE; O là trung điểm của AC (cmt)

=> OH là đường trung bình \(\Delta\)AEC 

=> OH // EC hay BD // EC => Tứ giác ECBD là hình thang (1)

Dễ thấy: \(\Delta\)ADE cân ở D có đường cao DH => DH cũng là phân giác ^ADE

=> ^ADH = ^EDH hay ^ADB = ^EDB. Mà ^ADB = ^CBD => ^CBD = ^EDB (2)

Từ (1) và (2) => Tứ giác ECBD là hình thang cân (đpcm).

19 tháng 8 2018

A B C E D H

20 tháng 8 2018

k cho ình mình k lại câu hỏi của mình mà bạn trả lời

17 tháng 8 2018

A B C D E

17 tháng 8 2018

Lấy E làm điểm đối xứng với A qua BD 

=> KA = KE  

và AE vuông góc với BK . 

Vì ABCD là hình bình hành (GT)

\(\Rightarrow AB=DC\) (1)

( Tính chất của hình bình hành)

Mặt khác ta có :

\(\hept{\begin{cases}KA=KE\left(cmt\right)\\BK\perp AE\end{cases}}\)

\(\Rightarrow\Delta ABE\)cân

( Tính chất đường cao , đường trung tuyến trong 1 tam giác)

Vì tam giác ABE cân

\(\Rightarrow AB=BE\) (2)

Từ (1) và (2)

\(\hept{\begin{cases}AB=DC\\AB=BE\end{cases}}\)

\(\Rightarrow DC=BE\)

=> ECBD là hình thang cân

( vì hình thang coa hai đường chéo bằng nhau là hình thang cân)

6 tháng 1 2019

987456321gianroi

a: Xét tứ giác AMND có 

AM//ND

AM=ND

Do đó: AMND là hình bình hành

b: Hình bình hành AMND có AM=AD

nên AMND là hình thoi

c: Xét tứ giác ANKQ có 

D là trung điểm của NQ

D là trung điểm của AK

Do đó: ANKQ là hình bình hành