Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
AB=CD (cạnh đối của hbh)
AM=AB/2; CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)
b/ Gọi O là giao của AC và BD => O là trung điểm của AC và BD (hai đường chéo hbh cắt nhau tại trung điểm mỗi đường)
Xét tứ giác BNDM có
MB thuộc AB; DN thuộc CD mà AB//CD => MB//DN
AB=CD (cmt) mà MB=AB/2 và DN=CD/2 => MB=DN
=> Tứ giác BNDM là hbh
Gọi O' là giao của MN và BD => O' là trung điểm của BD
Mà O cũng là trung điểm của BD => O trùng O' => AC; BD; MN đồng quy
c/
AM//DN vì vậy ko cắt nhau bạn xem lại đề bài
a) ABCD là hình bình hành nên AB//CD, AB=CD
Vì M,N lần lượt là trung điểm AB,CD nên \(\hept{\begin{cases}AM//CN\\AM=CN\left(=\frac{1}{2}AB=\frac{1}{2}DC\right)\end{cases}}\)
=> ANCM là hình bình hành.
b) Gọi O là giao điểm AC và BD
Mà ABCD là hình bình hành nên O trung điểm AC và BD
Vì ANCM là hình bình hành nên MN và AC cắt nhau tại trung điểm AC
=> MN qua O ---> ĐPCM
c) Câu này đề hơi sai nha, AM//DN nên ko có chuyện cắt nhau nha !!
Ở đây mình xin sửa đề lại là AN cắt DM tại E và CM cắt BN tại F.
Xét NE là đường trung bình tam giác DMC\(\Rightarrow\hept{\begin{cases}NE//MC\\NE=\frac{1}{2}MC\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}NE//MF\\NE=MF\left(=\frac{1}{2}MC\right)\end{cases}}\)---> Vậy NEMF là hình bình hành.
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét ΔAEM có
E là trung điểm của AB
EN//AM
Do đó; N là trung điểm của BM
=>BN=NM(1)
Xét ΔDNC có
F là trung điểm của DC
FM//NC
Do đó: M là trung điểm của DN
=>DM=MN(2)
Từ (1) và (2) suy ra DM=MN=NB
c: Xét ΔADM và ΔCBN có
AD=CB
\(\widehat{ADM}=\widehat{CBN}\)
DM=BN
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
mà EN=AM/2
và MF=CN/2
nên EN=MF
Xét tứ giác MENF có
NE//MF
NE=MF
Do đó: MENF là hình bình hành
a) Xét Tứ giác DEBF ta có:
EB // DF ( vì AB // CD )
EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa lại câu từ cho hay]
\(\Rightarrow\)tứ giác DEBF là hbh