K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét tam giác MNP và tam giác QNP: MN = QN; MP = QP; NP chung.

Vậy \(\Delta MNP = \Delta QNP\) (c.c.c)

Vậy \(\widehat {MNP} = \widehat {QNP}\) ( 2 góc tương ứng)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta có: tổng ba góc trong một tam giác bằng 180° và \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\) nên \(\widehat {PQM} = \widehat {NMQ}\).

Xét hai tam giác MNQ và QPM có:

\(\widehat {NQM}=\widehat {PMQ}\)

MQ chung

\(\widehat {NMQ}=\widehat {PQM}\)

Vậy \(\Delta MNQ = \Delta QPM\)(g.c.g). Do đó MN = QP, MP = QN ( 2 cạnh tương ứng)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)      Ta thấy tam giác AMN cân tại A do AM = AN

\( \Rightarrow \widehat {{M_1}} = ({180^o} - \widehat {{A_1}}):2 = ({180^o} - {42^o}):2 = {69^o}\)

Ta thấy tam giác PMN = tam giác AMN ( c-c-c )

\( \Rightarrow \widehat {{M_1}} = \widehat {PMN} = {69^o}\) (góc tương ứng )

Mà \( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} + \widehat {PMN} = {180^o}\)( các góc kề bù )

\( \Rightarrow \widehat {{M_2}} = {180^o} - {69^o} - {69^o} = {42^o}\)

Mà tam giác MPB cân tại M do MB = MP nên

\( \Rightarrow \widehat {{B_1}} = \widehat {MPB}\)

Áp dụng định lí tổng 3 góc trong tam giác

\( \Rightarrow \widehat {{B_1}} = ({180^o} - {42^o}):2 = {69^o}\)

b)      Ta thấy \(\widehat {{B_1}}\)và \(\widehat {{M_1}}\)ở vị trí đồng vị và bằng nhau nên

\( \Rightarrow \)MN⫽BC

Vì tam giác PMN = tam giác AMN nên ta có

\( \Rightarrow \widehat {{M_1}} = \widehat {ANM} = \widehat {PMN} = \widehat {MNP}\)( do 2 tam giác cân và bằng nhau )

Mà \(\widehat {MNA}\)và\(\widehat {PMN}\) ở vị trí so le trong

\( \Rightarrow \)MP⫽AC

c)      Ta có \(\Delta AMN = \Delta PMN = \Delta MBP(c - g - c)\)(1)

Vì MP⫽AC ( chứng minh trên )

\( \Rightarrow \widehat {MPN} = \widehat {PNC}\) ( 2 góc so le trong ) =\({42^o}\)

\( \Rightarrow \Delta MPN = \Delta NCP(c - g - c)\)(2)

Từ (1) và (2) \( \Rightarrow \) 4 tam giác cân AMN, MBP, PMN, NCP bằng nhau 

a: Xet ΔIMN và ΔIKN có

NM=NK

góc MNI=góc KNI

NI chung

=>ΔIMN=ΔIKN

=>góc IKN=90 độ

b:Xet ΔNKA vuông tại K và ΔNMP vuông tại M có

NK=NM

góc N chung

=>ΔNKA=ΔNMP

=>NA=NP

=>ΔNAP cân tại N

mà NI là phân giác

nên NI vuông góc PA

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)

Xét tam giác MPK có:

\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)

Xét tam giác NPK có:

\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)

Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)

Suy ra \(\widehat {MKP} = \widehat {NKP}\).

b)Xét hai tam giác MPK và NPK có:

\(\widehat {MPK} = \widehat {NPK}\)

PK chung

\(\widehat {MKP} = \widehat {NKP}\)

=>\(\Delta MPK = \Delta NPK\)(g.c.g)

c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)

=> Tam giác MNP cân tại P.

20 tháng 12 2018

a)

Xét tam giác NMD và tam giác NED, có:

NM=EH(gt)

\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)

ND là cạnh chung

Suy ra: Tam giác NMD=tam giác NED (c.g.c)

==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)

b) Có: +) MN vuông góc MP

+) EH vuông góc MP

==> MN // EH

c) Có : MN // EH

==> MNP = HEP (2 góc đồng vị)

9 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:

IN chung

MNI = KNI (do NI là phân giác của ∠MNP)

⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)

b) ∆IKP vuông tại K

IP là cạnh huyền nên IP lớn nhất

IK < IP (1)

Do ∆IMN = ∆IKN (cmt)

⇒ MI = IK (2)

Từ (1) và (2)⇒ MI < IP

c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:

IM = IK (cmt)

∠PIK = ∠MIQ (đối đỉnh)

∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)

⇒ KP = MQ (hai cạnh tương ứng)  (3)

Do ∆IMN = ∆IKN (cmt)

⇒ MN = KN (hai cạnh tương ứng)   (4)

Từ (3) và (4) ⇒ KN + KP = MN + MQ

NP = NQ

⇒ ∆NPQ cân tại N

Lại có NI là phân giác của ∠MNP

⇒ NI là phân giác của ∠QNP

⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)

⇒ ND ⊥ QP

9 tháng 5 2023

Giúp vs ạ mình đang cần gấp