Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác MND và tam giác END ta có
MN = EN
góc MND = góc END
ND: cạnh chung
suy ra tam giác MND = tam giác END
suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ
b) ta có tam giác MND = tam giác END suy ra MD = ED
xét tam giác DMK và tam giác DEP ta có
góc KMD = góc PED ( =90độ)
MD = ED
góc MDK = góc EDP( hai góc đối đinh)
suy ra tam giác DMK = tam giác DEP(đpcm)
c)ta có tam giác DMK = tam giác DEP suy ra MK=EP
ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP
xet tam giác KNDvà tam giác PND ta có
NK=NP
KND= PND
ND:cạnh chung
suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP
ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP
suy góc NDK = góc NDP =90độ
suy ra ND vuông góc với KP
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
A B C K E D H
a) Xét tam giác AKB và tam giác AKE
có BK = KE (gt)
\(\widehat{BKA}=\widehat{EKA}=90^0\)(gt)
AK : chung
=> tam giác AKB = tam giác AKE
b) Ta có: \(\widehat{BAK}=\widehat{ACB}\) (vì cùng phụ \(\widehat{KAC}\))
c) Ta có: Tam giác AKB = tam giác AKE (cmt)
=> \(\widehat{ABE}=\widehat{BEA}\) mà \(\widehat{BEA}=\widehat{DEC}\)(đối đỉnh)
=> \(\widehat{ABE}=\widehat{DEC}\)
Xét tam giác DEC vuông tại D có \(\widehat{DEC}+\widehat{ECD}=90^0\)
Xét tam giác ABK vuông tại K có \(\widehat{KBA}+\widehat{BAK}=90^0\)
mà \(\widehat{ABK}=\widehat{DEC}\) (cmt) => \(\widehat{BAK}=\widehat{ECD}\)
mà \(\widehat{BAK}=\widehat{ACB}\)(cm câu b)
=> \(\widehat{ACB}=\widehat{BCD}\) => CB là p/giác của góc ACD
d) Xét tam giác AHC có CK và AD là 2 đườn cao cắt nhau tại E => E là trực tâm
=> HE là đường cao thứ 3 => HE vuông góc với AC
mà BA vuông góc với AC
=> HE // AB
a)
Xét tam giác NMD và tam giác NED, có:
NM=EH(gt)
\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)
ND là cạnh chung
Suy ra: Tam giác NMD=tam giác NED (c.g.c)
==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)
b) Có: +) MN vuông góc MP
+) EH vuông góc MP
==> MN // EH
c) Có : MN // EH
==> MNP = HEP (2 góc đồng vị)