K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Ta có C ^ 1 + C ^ 2 = 180 0   (   2   g ó c   k ề   b ù ) ;

Mà C ^ 1 = C ^ 2  nên C ^ 1 = C ^ 2 = 180 0 2 = 90 0 ;

⇒ m ⊥ a

Mặt khác a // b (có 2 góc đồng vị bằng nhau);

⇒ m ⊥ b  (đpcm).

a: m vuông góc c

n vuông góc c

=>m//n

b: góc A1=180-75=105 độ

góc A2=180-105=75 độ

24 tháng 3 2017

 

Cho hình vẽ, biết :

a) T a  có:   A ^ 1 = A ^ 2 = 70 0 (đối đỉnh). 

Do đó  A ^ 1 + B ^ = 70 0 + 110 0 = 180 0  

Suy ra Ax//By (vì có cặp góc trong cùng phía bù nhau). 

b) Ta có: F ^ = H ^ 1 ;   K ^ = H ^ 2  mµ  H ^ 1 = H ^ 2 ( đối đỉnh)

 nên F ^ = K ^ . Suy ra  EF//IK( vì có cặp góc so le trong bằng nhau).

Ta có : M ^ 1 = P ^ 1 = 75 0 .

 

Suy ra a//c( vì có cặp góc đồng vị bằng nhau)

Ta có:

b N P ^  kÒ bï víi gãc N 1 , d o  ®ã: b N P ^ = 180 0 − 105 0 = 75 0 VËy  b N P ^ = P 1 ^ = 70 0

 

Suy ra b//c (vì có cặp góc đồng vị bằng nhau)

 

1 tháng 1 2020

Câu hỏi của nguyen thanh chuc - Toán lớp 7 - Học toán với OnlineMath

29 tháng 11 2023

Bài 4:

\(f\left(5\right)-f\left(4\right)=2019\)

=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)

=>\(61a+9b+21c=2019\)

\(f\left(7\right)-f\left(2\right)\)

\(=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c\)

\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn. Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao? Bài 4. Cho các số nguyên a, b,...
Đọc tiếp

Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x

 

Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.

 

Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?

 

Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn

 

Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0



Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|


Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|


Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1


Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2


Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4


Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2

0