Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)
\(M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)
\(M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(M< 1-\dfrac{1}{n}< 1\)
\(\Rightarrow M< 1\left(đpcm\right)\)
\(b,N=\dfrac{1}{4^2}+\dfrac{1}{6^6}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}\)
\(N< \dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(N< \dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
\(N< \dfrac{1}{3}-\dfrac{1}{2n+1}< \dfrac{1}{3}\)
\(c,\) Vì \(a< b\Rightarrow2a< a+b\)
\(c< d\Rightarrow2c< c+d\)
\(m< n\Rightarrow2m< m+n\)
\(\Rightarrow2a+2c+2m=2.\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\dfrac{a+c+m}{a+b+c+d+m}< \dfrac{1}{2}\)
B1:
Từ \(b=\frac{a+c}{2}\Rightarrow2b=a+c\left(1\right)\)
Từ \(c=\frac{2bd}{b+a}\)thay vào (1) ta được:
\(2b=a+\frac{2bd}{b+a}\)
\(\Leftrightarrow2b\left(b+a\right)=a\left(b+a\right)+2bd\)
\(\Leftrightarrow2b^2+2ab=ab+a^2+2bd\)
\(\Leftrightarrow2b^2+ab-a^2-2bd=0\)
\(\Leftrightarrow2b\left(b-d\right)+a\left(b-a\right)=0\)
\(\Leftrightarrow2b\left(b-d\right)=a\left(a-b\right)\Leftrightarrow\frac{2b}{a}=\frac{a-b}{b-d}\)
B2: Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}hay2ab=c\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)
Do đó: \(\frac{a-c}{c-b}=\frac{a}{b}\)(đpcm)
Ta có C ^ 1 + C ^ 2 = 180 0 ( 2 g ó c k ề b ù ) ;
Mà C ^ 1 = C ^ 2 nên C ^ 1 = C ^ 2 = 180 0 2 = 90 0 ;
⇒ m ⊥ a
Mặt khác a // b (có 2 góc đồng vị bằng nhau);
⇒ m ⊥ b (đpcm).