\(\left\{{}\begin{matrix}mx+y=m+1\\x+mx=2m\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

Pt dưới chắc là x+my=2m

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=m\left(1-x\right)\\x=m\left(2-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{y-1}{1-x}\\m=\frac{x}{2-y}\end{matrix}\right.\)

\(\Rightarrow\frac{y-1}{1-x}=\frac{x}{2-y}\)

\(\Rightarrow x\left(1-x\right)=\left(y-1\right)\left(2-y\right)\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

11 tháng 1 2021

\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\left(1\right)\\x+my=2\left(2\right)\end{matrix}\right.\)

Từ (1) ⇒ mx=1-y⇒\(m=\dfrac{1-y}{x}\) Thay vào (2) ta được:

⇒x+\(\left(\dfrac{1-y}{x}\right)y\)=2⇒\(x+\dfrac{y-y^2}{x}=2\Rightarrow x^2+y-y^2=2\Rightarrow x^2-y^2+y=2\) 

Đây là hệ thức liên hệ giữa x và y ko phụ thuộc vào m

 

NV
19 tháng 1 2024

\(\left\{{}\begin{matrix}x+my=1\\mx-y=-m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}my=1-x\\m\left(x+1\right)=y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{1-x}{y}\\m=\dfrac{y}{x+1}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1-x}{y}=\dfrac{y}{x+1}\)

\(\Rightarrow y^2=\left(1-x\right)\left(1+x\right)=1-x^2\)

\(\Rightarrow x^2+y^2=1\)

Đây là biểu thức liên hệ x; y không phụ thuộc m

NM
10 tháng 1 2021

cashc làm là ta rút m ở cả hai phương trình 

từ \(mx+y=1\Rightarrow m=\frac{1-y}{x}\)với x khác 0

từ \(x+my=2\Rightarrow m=\frac{2-x}{y}\) với y khác 0

từ hai điều trên ta có \(\frac{1-y}{x}=\frac{2-x}{y}\Leftrightarrow y-y^2=2x-x^2\) vậy ta có hệ thức cần tìm

1 tháng 6 2017

\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x+my=1\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x+\frac{2+y}{x}.y=1\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x^2+y^2+2y-x=0\end{cases}}\)

Vậy hệ thức liên hệ giữa x và y là x2+y2+2y-x=0

1 tháng 6 2017

\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x+my=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x+\frac{2+y}{x}.y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x^2+y^2+2y-x=0\end{cases}}\)

1 tháng 8 2018

mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .

d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)

th1: \(m+2=0\Leftrightarrow m=-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có vô số nghiệm

th2: \(m+2\ne0\Leftrightarrow m\ne-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

vậy khi +) \(m=-2\) phương trình có vô số nghiệm

+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

25 tháng 8 2018

Bạn làm phần c hộ mình với

17 tháng 2 2021

=( U GAY