Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\left(1\right)\\x+my=2\left(2\right)\end{matrix}\right.\)
Từ (1) ⇒ mx=1-y⇒\(m=\dfrac{1-y}{x}\) Thay vào (2) ta được:
⇒x+\(\left(\dfrac{1-y}{x}\right)y\)=2⇒\(x+\dfrac{y-y^2}{x}=2\Rightarrow x^2+y-y^2=2\Rightarrow x^2-y^2+y=2\)
Đây là hệ thức liên hệ giữa x và y ko phụ thuộc vào m
\(\left\{{}\begin{matrix}x+my=1\\mx-y=-m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}my=1-x\\m\left(x+1\right)=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{1-x}{y}\\m=\dfrac{y}{x+1}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1-x}{y}=\dfrac{y}{x+1}\)
\(\Rightarrow y^2=\left(1-x\right)\left(1+x\right)=1-x^2\)
\(\Rightarrow x^2+y^2=1\)
Đây là biểu thức liên hệ x; y không phụ thuộc m
cashc làm là ta rút m ở cả hai phương trình
từ \(mx+y=1\Rightarrow m=\frac{1-y}{x}\)với x khác 0
từ \(x+my=2\Rightarrow m=\frac{2-x}{y}\) với y khác 0
từ hai điều trên ta có \(\frac{1-y}{x}=\frac{2-x}{y}\Leftrightarrow y-y^2=2x-x^2\) vậy ta có hệ thức cần tìm
\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x+my=1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x+\frac{2+y}{x}.y=1\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m=\frac{2+y}{x}\\x^2+y^2+2y-x=0\end{cases}}\)
Vậy hệ thức liên hệ giữa x và y là x2+y2+2y-x=0
\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x+my=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x+\frac{2+y}{x}.y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\frac{2+y}{x}\\x^2+y^2+2y-x=0\end{cases}}\)
mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .
d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)
th1: \(m+2=0\Leftrightarrow m=-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có vô số nghiệm
th2: \(m+2\ne0\Leftrightarrow m\ne-2\)
khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
vậy khi +) \(m=-2\) phương trình có vô số nghiệm
+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)
Pt dưới chắc là x+my=2m
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=m\left(1-x\right)\\x=m\left(2-y\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=\frac{y-1}{1-x}\\m=\frac{x}{2-y}\end{matrix}\right.\)
\(\Rightarrow\frac{y-1}{1-x}=\frac{x}{2-y}\)
\(\Rightarrow x\left(1-x\right)=\left(y-1\right)\left(2-y\right)\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m