K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

A B C D M N O H R

BẠN CHỊU KHÓ NHÌN HÌNH NHA!

1) Ta có: \(AN=\dfrac{1}{2}AD=\dfrac{1}{2}BC=MC\) , AN // MC

Do đó: tứ giác AMCN là hình bình hành

\(\Rightarrow MA//NC\).

2) Vì hình bình hành ABCD có 2 đường chéo BD và AC cắt nhau tại O nên O là trung điểm AC (1)

Mặt khác: Hình bình hành AMCN có 2 đường chéo AC và MN cắt nhau tại R nên R là trung điểm của AC (2) và MN

Từ (1) và (2) ta suy ra: R\(\equiv\)O hay O là trung điểm MN hay M,O,N thẳng hàng.

3) Nối NH, trong tam giác vuông HDA có HN là đường trung tuyến ứng với cạnh huyền AD nên \(HN=\dfrac{1}{2}AD=AN\)

Suy ra: \(\Delta\)HNA cân tại N, \(\widehat{NHA}=\widehat{HAN}\)

Mà MA // NC nên \(\widehat{HAN}=\widehat{ANC}\) (So le trong) \(=\widehat{AMC}\) (Vì AMCN là hình bình hành)

\(\Rightarrow\widehat{NHA}=\widehat{HAN}=\widehat{AMC}\) (3)

Lại có: NC // MH nên NCMH là hình thang

Từ (3) suy ra NCMH là hình thang cân

\(\Rightarrow MN=CH\)

\(MN=\dfrac{AB+CD}{2}=\dfrac{2CD}{2}=CD\) nên \(MN=CH=CD\)

31 tháng 10 2021

1: Xét tứ giác AMCN có

AN//CM

AN=CM

Do đó: AMCN là hình bình hành

11 tháng 10 2015

a) chứng minh tứ giác AMCN là hình bình hành

M là trung điểm AB nên: AM = \(\frac{1}{2}\)BC

N là trung điểm CD nên: CN = \(\frac{1}{2}\)CD

Vì tứ giác ABCD là hình bình hành nên:

- AB = CD => AM = CN

- AB // CD => AM //CN

Tứ giác AMCN có cặp cạnh AM, CN song song và bằng nhau nên nó là hình bình hành.

b) chứng minh M, O, N thẳng hàng

* AC và BD là hai đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm của mỗi đường.

Do đó, O là trung điểm AC

* AC và MN là hai đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC

hay M, O, N thẳng hàng.

7 tháng 10 2017

M là trung điểm AB nên : \(AM=\frac{BC}{2}\)

N là trung điểm CD nên : \(CN=\frac{CD}{2}\)

Vì tứ giác ABCD là hình bình hành : 

- AB = CD => AM = CN

- AB // CD => AM // CN 

Tứ giác AMCN có các cặp cạnh AM , CN song song và bằng nhau nên là hình bình hành ( đpcm )

b) - AC và BD là 2 đường chéo của hình bình hành ABCD nên chúng cắt nhau tại trung điểm mỗi đường 

=> O là trung điểm AC

- AC và MN là 2 đường chéo của hình bình hành AMCN nên MN phải đi qua trung điểm O của AC 

hay M , O , N thẳng hàng  ( đpcm )

11 tháng 10 2020

Bài 7. Cho hình bình hành ABCD , O là giao điểm của AC và BD Gọi M và N lần lượt là trung điểm của các cạnh BC và AD . Chứng minh : a ) Tứ giác AMCN là hình bình hành . b ) Ba điểm M , O , N thẳng hàng . c ) Đường chéo BD cắt AM , CN lần lượt tại I và K. Chứng minh DK = KI = IB . 

a: Xét ΔHAD có HM/HA=HN/HD

nên MN//AD

 b: Xét ΔHAD có MN//AD

nên MN/AD=HM/HA=1/2

=>MN=1/2AD=1/2BC

=>MN=BI

mà MN//BI

nên BMNI là hình bình hành

a: ABCD là hình chữ nhật

=>O là trung điểm chug của AC và BD; AC=BD

=>OM=ON

Xét ΔAON và ΔCOM có

OA=OC

góc AON=góc COM

ON=OM

=>ΔAON=ΔCOM

Xet tứ giác ANCM có

O là trung điểm chung của AC và NM

=>ANCM là hình bình hành

b: Xét ΔDMC có OH//MC

nên DO/OM=DH/HC

=>DH/HC=2/1=2

=>DH=2HC

Xét ΔDOH có

N là trung điểm của DO

NE//OH

=>E là trung điểm của DH

=>DE=EH=1/2DH=HC

=>EH=1/3*DC

Xét ΔMFB và ΔMCD có

góc MFB=góc MCD

góc FMB=góc CMD

=>ΔMFB đồng dạng với ΔMCD

=>FB/CD=MB/MD=1/3

=>FB=1/3CD=EH

 

15 tháng 7 2021

khó quá !!!!!!!!!!!!!!1

Giải chi tiết:

a) Xét tam giác AHD có:

M là trung điểm của AH (gt) 

N là trung điểm của DH (gt) 

Do đó MN là đường trung bình của tam giác AHD

Suy ra MN//AD (tính chất) (đpcm)

b) Ta có MN//AD, mà AD//BC (2 cạnh đối hình chữ nhật)  nên MN//BC hay MN//BI     Vì MN = 1212AD (tính chất đường trung bình của tam giác)    và BI = IC = 1212BC (do gt),  mà AD = BC (2 cạnh đối hình chữ nhật)  MN = BI BC hay MN//BI   Xét tứ giác BMNI có MN//BI, MN = BI (c/m trên)    Suy ra tứ giác BMNI là hình bình hành (đpcm)  

c) Ta có MN//AD và AD⊥⊥AB nên MN⊥⊥AB

Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là trực tâm của tam giác ABN. Suy ra BM⊥⊥AN.

Mà BM//IN nên AN⊥⊥NI hay ΔANIΔANI  vuông tại N (đpcm)   

# M̤̮èO̤̮×͜×L̤̮ườI̤̮◇