K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: (x+4)(x-1)<>0

hay \(x\notin\left\{-4;1\right\}\)

b: \(y-3=\dfrac{2x^2+6\sqrt{\left(x^2+1\right)\left(x-2\right)}+5-3x^2-9x+12}{x^2+3x-4}\)

\(=\dfrac{-x^2-9x+17+6\sqrt{\left(x^2+1\right)\left(x-2\right)}}{x^2+3x-4}< =0\)

=>y<=3

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

16 tháng 11 2020

a) \(y=x^3-2x^2+x-1\)

TXĐ : \(x\inℝ\)

b) \(y=\frac{x-1}{\left(x+1\right)\left(x-3\right)}\)

TXĐ : \(\hept{\begin{cases}x\inℝ\\x\ne-1\\x\ne3\end{cases}}\)

c) \(y=\frac{1}{x^2-2x+3}\)

TXĐ : \(x\inℝ\)

6 tháng 11 2018

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến

17 tháng 8 2016

a) ĐKXĐ : \(3x+2\ne0\Leftrightarrow x\ne-\frac{2}{3}\)

b) \(5-2x\ne0\Leftrightarrow x\ne\frac{5}{2}\)

c) \(x+4\ne0\Leftrightarrow x\ne-4\)

d) \(2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)

e) Với mọi x là số thực

f) \(\begin{cases}4-x\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow-1\le x\le4\)