K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

Đồ thị hàm số \(y=f\left(\left|x\right|\right)\)

\(f^2\left(\left|x\right|\right)+\left(m-1\right)f\left(\left|x\right|\right)-m=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=1\left(2\right)\\f\left(\left|x\right|\right)=-m\left(3\right)\end{matrix}\right.\)

Từ đồ thị ta thấy phương trình \(\left(2\right)\) có hai nghiệm phân biệt nên phương trình \(\left(1\right)\) có hai nghiệm phân biệt khi phương trình \(\left(3\right)\) có hai nghiệm phân biệt khác hai nghiệm của phương trình \(\left(2\right)\).

\(\Leftrightarrow\left[{}\begin{matrix}-m=-3\\-1< -m< 1\\-m>1\end{matrix}\right.\)

...

29 tháng 1 2022

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

 

 

NV
26 tháng 3 2023

\(\Leftrightarrow\sqrt{2t^2+mt-m-1}=t-1\) có 2 nghiệm thỏa mãn \(1\le t< 3\)

\(\Rightarrow2t^2+mt-m-1=t^2-2t+1\)

\(\Leftrightarrow f\left(t\right)=t^2+\left(m+2\right)t-m-2=0\) có 2 nghiệm \(1< t_1< t_2< 3\) (hiển nhiên \(t=1\) ko là nghiệm)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2+4\left(m+2\right)>0\\f\left(1\right)=1>0\\f\left(3\right)=9+3\left(m+2\right)-m-2>0\\1< \dfrac{t_1+t_2}{2}=\dfrac{-m-2}{2}< 3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)\left(m+6\right)>0\\2m+13>0\\2< -m-2< 6\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-2\\m< -6\end{matrix}\right.\\m>-\dfrac{13}{2}\\-8< m< -4\end{matrix}\right.\) \(\Rightarrow-\dfrac{13}{2}< m< -6\)

NV
23 tháng 10 2021

Đề bài không đúng em nhé

Đặt \(f\left(\left|x\right|\right)=t\) thì ứng với mỗi giá trị t chỉ cho tối đa 4 nghiệm x

Phương trình trở thành:

\(t-\left(m+1\right)\left|t\right|+m=0\)

\(\Leftrightarrow t-\left|t\right|=m\left(\left|t\right|-1\right)\) (1)

- Với \(t\ge0\) \(\Rightarrow t-t=m\left(t-1\right)\Leftrightarrow m\left(t-1\right)=0\)

+ Với \(m=0\Rightarrow\) pt có vô số nghiệm (ko thỏa mãn)

+ Với \(m\ne0\Rightarrow t=1\Rightarrow f\left(\left|x\right|\right)=1\) có tối đa 4 nghiệm (ktm)

- Với t<0, (1) trở thành:

\(2t=-m\left(t+1\right)\)

Với \(t=-1\) ko phải nghiệm, với \(t\ne-1\) pt trở thành:

\(-m=\dfrac{2t}{t+1}\) (2)

Do \(\dfrac{2t}{t+1}\) đồng biến trên R nên (2) có tối đa 1 nghiệm t

\(\Rightarrow f\left(\left|x\right|\right)=t\) có tối đa 4 nghiệm (ít hơn 8 nghiệm) \(\Rightarrow\) ktm

Do đó không tồn tại m thỏa mãn bài toán