Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với \(x\in\left[0;1\right]\) => x - 2 < 0 => |x - 2| = - (x -2)
Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)
Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\) (*) với mọi \(x\in\left[0;1\right]\)
+) Xét m - 1 > 0 <=> m > 1
(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2
Kết hợp điều kiện m > 1 =>1 < m \(\le\) 2
+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn
+) Xét m - 1 < 0 <=> m < 1
(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1
Kết hợp các trường hợp : Với 0 \(\le\)m \(\le\) 2 thì .....
b) Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)
Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => xo < 2 => |xo - 2| = - (xo - 2)
xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\)
+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < xo < 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\)
Giải (a) <=> 1 < m < 2
Giải (b) <=> m < 1 hoặc m > 4/3
Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2
+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí
Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)
a)
f(x) giao trục tại hai Điểm có hoành độ x1=-4; x2=-2
g(x) giao trục hoành duy nhất một điểm hoành độ x=m/2
b) f(x) >g(x) => điểm m/2 phải trong khoảng (-4,-2)
\(-4< \dfrac{m}{2}< -2\Leftrightarrow-8< m< -4\)
đồ thị hai hàm parabol có một điểm chung khi chúng có chung đỉnh
hay đỉnh I(1,3) của f(x) cũng là đỉnh của g(x)
dẫn đến giá trị nhỏ nhất của hai hàm là bằng nhau.
thế nên bài này sai ngay từ đề bài rồi nhé
hay nói cách khác , không tồn tại hai số a b thỏa mãn điều kiện trên
Bạn tự vẽ đồ thị.
Ta đã biết quy tắc vẽ đồ thị của hàm số \(y=f\left(\left|x\right|\right)\) là vẽ đồ thị của hàm \(y=f\left(x\right)\), sau đó bỏ phần đồ thị bên trái trục Oy và lấy đối xứng phần đồ thị bên phải qua.
\(\Rightarrow f\left(x\right)=0\) có hai nghiệm dương phân biệt thì \(f\left(\left|x\right|\right)=0\) có 4 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có 2 nghiệm trái dấu thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có nghiệm kép dương thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt.
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) (1)
\(\Leftrightarrow\left(f\left(\left|x\right|\right)-1\right)\left(f\left(\left|x\right|\right)-m+3\right)=0\)\(\Rightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)-1=0\\f\left(\left|x\right|\right)-m+3=0\left(2\right)\end{matrix}\right.\)
Xét \(f\left(x\right)-1=x^2-4x+2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\) (3)
\(\Rightarrow f\left(x\right)-1=0\) có 2 nghiệm dương phân biệt \(\Rightarrow f\left(\left|x\right|\right)-1=0\) có 4 nghiệm phân biệt
\(\Rightarrow\) Để (1) có 6 nghiệm phân biệt thì (2) có 2 nghiệm phân biệt. Ta có các trường hợp sau:
TH1: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có 2 nghiệm trái dấu, và nghiệm dương khác nghiệm của (3).
\(\Rightarrow\left\{{}\begin{matrix}1.\left(6-m\right)< 0\\m\ne4\end{matrix}\right.\) \(\Rightarrow m>6\)
TH2: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có nghiệm kép dương và khác nghiệm của (3)
\(\Rightarrow\Delta'=4+m-6=0\Rightarrow m=2\) \(\Rightarrow x=2>0\) (t/m)
Vậy để pt đã cho có 6 nghiệm phân biệt thì: \(\left[{}\begin{matrix}m>6\\m=2\end{matrix}\right.\)
mình dựa vào đồ thị cũng ra như bạn, nhưng đáp án chỉ có 1,2,3 hoặc 4 giá trị nguyên của m thôi, có khi nào mình sai ở đâu đấy k nhỉ