Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\sqrt{\left(1-x\right)^2}-1=\left|1-x\right|-1=1-x-1\)(vì x<1)
<=> A=\(-x\)
b,B=\(\frac{3-\sqrt{x}}{x-9}\left(x\ge0,x\ne9\right)\)
=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)
Vậy \(B=-\frac{1}{\sqrt{x}+3}\)
c, C=\(\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}\left(x\ge0,x\ne9\right)\)
=\(\frac{x-2\sqrt{x}-3\sqrt{x}+6}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)=\(\sqrt{x}-2\)
Vậy C= \(\sqrt{x}-2\)
d, D=\(5-3x-\sqrt{25-10x+x^2}\left(x< 5\right)\)
= \(5-3x-\sqrt{\left(5-x\right)^2}\)=\(5-3x-\left|5-x\right|\)=\(5-3x-5+x\) (vì x<5)=-2x
Vậy D=-2x
e, E=\(\sqrt{3a}.\sqrt{27a}\) (đk \(a\ge0\))
=\(\sqrt{3.27.a^2}=\sqrt{3^4}.a=9a\)
Vậy E=9a
f, F=\(\frac{1}{a-1}\sqrt{9\left(a-1\right)^2}\) (đk :a>1)
= \(\frac{1}{a-1}.3\left|a-1\right|\)=\(\frac{1}{a-1}.3\left(a-1\right)\) (vì a>1)=3
Vậy F=3
a)\(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}=\sqrt{3}\left(\sqrt{3}-1\right)-\sqrt{15}\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{15}\right)=\sqrt{3}\left(\sqrt{3}-1\right)\left(1-\sqrt{5}\right)\)\(\)b)\(\sqrt{1-a}+\sqrt{1-a^2}=\sqrt{1-a}.1+\sqrt{1-a}.\sqrt{1+a}=\sqrt{1-a}\left(\sqrt{1+a}+1\right)\)
c)\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b+\sqrt{ab}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+2\sqrt{ab}+b\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)