K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

 Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2 suy ra điểm A(0; -2) thuộc đồ thị hàm số hay -2 = 2.0 + m + 1 suy ra m = -3

Chọn A.

23 tháng 10 2018

Câu 1 :

\(y=-\left(m^2+1\right)x+m-4\)

Để hàm số nghịch biến trên R

⇔ a < 0

\(-\left(m^2+1\right)\)< 0

\(m^2+1\) > 0

\(m^2\) > -1 ∀x ∈ R

⇔ m ∈ R

Vậy với mọi giá trị của m thì hàm số nghịch biến trên R

Câu 2 :

Gọi (d) : y =ax+b

Vì (d) cắt trục hoành tại điểm x = 3

nên (d) sẽ cắt điểm A(3;0)

A(3;0) ∈ (d) ⇔ 0 = 3a +b

Mà M(-2;4) ∈ (d) ⇔ 4 = -2a +b

Ta có : \(\left\{{}\begin{matrix}3a+b=0\\-2a+b=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=\dfrac{-4}{5}\\b=\dfrac{12}{5}\end{matrix}\right.\)

Vậy a=\(\dfrac{-4}{5}\) và b= \(\dfrac{12}{5}\)

Câu 3 :

(d) : \(y=2x+m+1\)

a) Vì (d) cắt trục hoành tại điểm có hoành độ bằng 3

nên (d) sẽ cắt điểm A(3;0)

A(3;0) ∈ (d) ⇔ 0 = 2 .3 + m+1⇔ m= -7

Vậy m = -7

b) Vì (d) cắt trục tung tại điểm có tung độ bằng -2

nên (d) sẽ cắt điểm B( 0;-2)

B( 0;-2) ∈ (d) ⇔ -2 = 0.2+m+1 ⇔ m = -3

Vậy m = -3

6 tháng 8 2016

cam on chị

 

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

NV
14 tháng 10 2019

Tọa độ giao điểm với \(\Delta_1\) : \(y=2.\left(-2\right)+5=1\Rightarrow A\left(-2;1\right)\)

Tọa độ giao điểm với \(\Delta_2\): \(-3x+4=-2\Rightarrow x=2\Rightarrow B\left(2;-2\right)\)

Thay tọa độ A; B vào pt (d):

\(\left\{{}\begin{matrix}-2a+b=1\\2a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{4}\\b=-\frac{1}{2}\end{matrix}\right.\)

30 tháng 10 2019

Đáp án A

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)

c: Điểm M,N ở đâu vậy bạn?