Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(y'=4x^3+12mx^2+6\left(m+1\right)x\)
ta giải pt \(4x^3+12mx^2+6\left(m+1\right)x=0\Leftrightarrow x\left(4x^2+12mx+6m+6\right)=0\)
suy ra \(\begin{cases}x=0\\4x^2+12mx+6m+6=0\end{cases}\)
ta tính \(y''=12x^2+24mx+6m+6\)
để hàm số có cực đâị mà ko có cực tiểu thì y''(0)<0 với mọi x
giải pt suy ra đc điều kiện của m
Đáp án C.
Ta có
y ' = x 2 + 2 m x + m 2 + m + 1 ; y " = 2 x + 2 m
Để hàm số đạt cực đại tại điểm x = 1 thì
y ' 1 = 0 y " 1 < 0 ⇔ m 2 + 3 m + 2 = 0 2 m + 2 < 0 ⇒ m = − 2.
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!