Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a)f\left(x\right)=10x\)
\(\Leftrightarrow f\left(0\right)=10.0=0\)
\(\Leftrightarrow f\left(-1\right)=10\left(-1\right)=-10\)
\(\Leftrightarrow f\left(\frac{1}{2}\right)=\frac{10}{2}=5\)
\(b)\)Vì \(f\left(x\right)=10x\)
Nên: \(f\left(a+b\right)=10\left(a+b\right)\)
Và: \(f\left(a\right)+f\left(b\right)=10a+10b=10\left(a+b\right)\)
Do đó:
\(f\left(a+b\right)=f\left(a\right)+f\left(b\right)\left(đpcm\right)\)
\(c)\)Vì \(\hept{\begin{cases}f\left(x\right)=10x\\f\left(x\right)=x^2\end{cases}\Leftrightarrow x^2=10x}\)
\(\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x\left(x-10\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x=0\\x=10\end{cases}}\)thì \(f\left(x\right)=x^2\)
a, Ta có:
f(a + b) = 10(a + b)
f(a) + f(b) = 10a + 10b = 10(a+ b)
=> f(a + b) = f(a) + f(b)
b, f(x) = x2 <=> 10x = x2
<=> x = 10 hoặc x = 0
Bài 1: Cho hàm số Y= f(x)=k.x ( k là hằng số , k khác 0). Chứng minh rằng:
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
a/ Ta có \(f\left(-x\right)=\left|-x-2014\right|-\left|-x+2014\right|\)
Mà \(\left|-x-2014\right|\le\left|-x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)
\(\left|-x+2014\right|\le\left|-x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)
=>\(\left|-x-2014\right|-\left|-x+2014\right|\le\left(\left|-x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)
=> \(\left|-x-2014\right|-\left|-x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)
=> \(\left|-x-2014\right|-\left|-x+2014\right|\le0\)(1)
và \(f\left(x\right)=\left|x-2014\right|-\left|x+2014\right|\)
Mà \(\left|x-2014\right|\le\left|x\right|+\left|-2014\right|\)(BĐT về giá trị tuyệt đối)
\(\left|x+2014\right|\le\left|x\right|+\left|2014\right|\)(BĐT về giá trị tuyệt đối)
=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(\left|x\right|+\left|-2014\right|\right)-\left(\left|x\right|+\left|2014\right|\right)\)
=> \(\left|x-2014\right|-\left|x+2014\right|\le\left(x+2014\right)-\left(x+2014\right)\)
=> \(\left|x-2014\right|-\left|x+2014\right|\le0\)(2)
Từ (1) và (2) => \(\left|-x-2014\right|-\left|-x+2014\right|=\left|x-2014\right|-\left|x+2014\right|\)
=> \(f\left(x\right)=f\left(-x\right)\)(đpcm)
b/ + Ta có \(\left|x-2014\right|\ge0\)với mọi giá trị của x
\(\left|x+2014\right|\ge0\)với mọi giá trị của x
=> \(\left|x-2014\right|-\left|x+2014\right|\ge0\)với mọi giá trị của x
=> GTNN của f (x) = 0.
và \(\left|x-2014\right|-\left|x+2014\right|\le0\)(cm câu a)
=> GTLN của f (x) = 0.
a: f(a+b)=10a+10b
f(a)+f(b)=10a+10b
Do đó: f(a+b)=f(a)+f(b)
phần b đou hả a?