Cho hàm số đa thức f x = m x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Phương trình hoành độ giao điểm của đồ thị với trục hoành là :

\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)

Biến đổi tương đương phương trình này :

\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)

      \(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)

Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :

\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)

Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)

\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)

 

26 tháng 4 2016

Ta có : \(y'=3x^2-2\left(m-1\right)x+3m+1\)

Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm, ta có : \(x_0=1\Rightarrow y_0=3m+1,y'\left(1\right)=m+6\)

Phương trình tiếp tuyến tại M  : \(y=\left(m+6\right)\left(x-1\right)+3m+1\)

Tiếp tuyến đi qua A \(\Leftrightarrow-1=m+6+3m+1\Leftrightarrow m=-2\)

Vậy m = -2 là giá trị cần tìm

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

21 tháng 4 2016

Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)

Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)

(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt

Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)

Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \)  là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :

\(x_2-x_1=x_3-x_2=x_4-x_3\)

\(\Leftrightarrow t_2=9t_1\left(a\right)\)

Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)

Từ (a) và (b) ta có : \(9m^2-14m-39=0\)

Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)

21 tháng 4 2016

Phương trình hoành độ giao điểm của \(\left(C_m\right)\) và đường thẳng y = -1 là :

\(x^4-\left(3m+2\right)x^2+3m=-1\Leftrightarrow\left(x^2-1\right)\left(x^2-3m-1\right)=0\)

Đường thẳng y = -1 cắt  \(\left(C_m\right)\) tại 4 điểm phân biệt có hoành độ nhỏ hơn 2 khi và chỉ khi :

\(0 < 3m+1 < 4\) và \(3m+1\ne1\)

\(\Leftrightarrow\)\(-\frac{1}{3}< m\)< 1 và \(m\ne0\)

 
28 tháng 4 2016

Phương trình tiếp tuyến \(\Delta\) tại \(M\left(x_0;-x^3_0+3x_0-2\right)\) là :

\(y=\left(-3x^2_0+3\right)\left(x-x_0\right)-x_0^3+3x_0-2\)

Gọi N (a;0) thuộc trục hoành. Vì \(N\in\Delta\) nên \(0=\left(-3x^2_0+3\right)\left(a-x_0\right)-x_0^3+3x_0-2\)

                           \(\Leftrightarrow\left[\begin{array}{nghiempt}x_0=1\\g\left(x_0\right)=2x_0^2+\left(2-3a\right)x_0+2-3a=0\end{array}\right.\) (*)

Để từ N kẻ được 3 tiếp tuyến đến (C) thì phương trình \(f\left(x_0\right)=0\) phải có hệ nghiệm phân biệt khác 1

Điều này tương đương với :

\(\begin{cases}\Delta=\left(2-3a\right)^2-8\left(2-3a\right)>0\\g\left(1\right)6-6a\ne0\end{cases}\) \(\Leftrightarrow a\in\left(-\infty;-2\right)\cup\left(\frac{2}{3};+\infty\right)\backslash\left\{1\right\}\)

Giả sử \(x_3=1\) thì \(x_1;x_2\) là nghiệm phương trình (*) nên theo Viet ta có :

\(\begin{cases}x_1+x_2=\frac{3a-2}{2}\\x_1.x_2=\frac{2-3a}{2}\end{cases}\)

Ta có \(x_1^3+x_2^3+x_3^3=21\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=20\)

                                      \(\Leftrightarrow\left(3a-2\right)^3+6\left(3a-2\right)^2-160=0\)

                                      \(\Leftrightarrow3a-2=4\Leftrightarrow a=2\) (thỏa mãn)

Vậy ta có \(N\left(2;0\right)\)

8 tháng 11 2017

câu này trình bày như thế nào

25 tháng 6 2019

Hình như gặp ở đâu rồi: