K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Phương trình hoành độ giao điểm của đồ thị với trục hoành là :

\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)

Biến đổi tương đương phương trình này :

\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)

      \(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)

Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :

\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)

Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)

\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)

 

6 tháng 4 2016

\(\frac{2x-1}{-x-1}=-2x+m\Leftrightarrow\begin{cases}2x^2-\left(m+4\right)x+1=0\left(1\right)\\x\ne1\end{cases}\)

Đường thẳng y=-2x+m cắt (C) tại 2 điểm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 1

\(\Leftrightarrow\begin{cases}\left(m+4\right)^2-8\left(m+1\right)>0\\-1\ne0\end{cases}\) \(\Leftrightarrow m^2+8>0\) với mọi m

Vậy với mọi m, đường thẳng y=x+m luôn cắt đồ thị C tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1\ne x_2\)

Theo Viet : \(x_1+x_2=\frac{4+m}{2},x_1.x_2=\frac{m+1}{2}\)

\(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\Leftrightarrow\frac{m+1}{2}-4\left(\frac{m+4}{2}\right)=\frac{7}{2}\Leftrightarrow m=-\frac{22}{3}\)

Vậy \(m=-\frac{22}{3}\) thì đường thẳng \(y=-2x+m\) cắt đồ thì (C) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\)

21 tháng 4 2016

Phương trình hoành độ giao điểm : \(-x^4+2\left(2+m\right)x^2-3-2m=0\left(1\right)\)

Đặt \(t=x^2,\left(t\ge0\right)\), phương trình (1) trở thành : \(t^2-1\left(m+2\right)t+3+2m=0\left(2\right)\)

(1) có 4 nghiệm phân biệt khi và chỉ khi (2) có 2 nghiệm dương phân biệt

Điều kiện là : \(\begin{cases}\Delta'>0\\S>0\\P>0\end{cases}\) \(\Leftrightarrow\begin{cases}m^2+2m+1>0\\m+2>0\\3+2>0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne-1\\m>-\frac{3}{2}\end{cases}\) (*)

Với điều kiện (*), giả sử \(t_1;t_2\) (\(0 < t 1 < t2 \)  là 2 nghiệm phân biệt của (2), khi đó (1) có 4 nghiệm phân biệt là \(x_1=-\sqrt{t_2};x_2=-\sqrt{t_1};x_3=\sqrt{t_1};x_4=\sqrt{t_2};\)

\(x_1;x_2;x_3;x_4\) lập thành một cấp số cộng khi và chỉ khi :

\(x_2-x_1=x_3-x_2=x_4-x_3\)

\(\Leftrightarrow t_2=9t_1\left(a\right)\)

Áp dụng định lí Viet ta có : \(t_1+t_2=2\left(m+2\right);t_1.t_2=3+2m\left(b\right)\)

Từ (a) và (b) ta có : \(9m^2-14m-39=0\)

Đối chiếu điều kiện (*) ta có \(m=3\) hoặc \(m=-\frac{13}{9}\)

28 tháng 4 2016

Phương trình tiếp tuyến \(\Delta\) tại \(M\left(x_0;-x^3_0+3x_0-2\right)\) là :

\(y=\left(-3x^2_0+3\right)\left(x-x_0\right)-x_0^3+3x_0-2\)

Gọi N (a;0) thuộc trục hoành. Vì \(N\in\Delta\) nên \(0=\left(-3x^2_0+3\right)\left(a-x_0\right)-x_0^3+3x_0-2\)

                           \(\Leftrightarrow\left[\begin{array}{nghiempt}x_0=1\\g\left(x_0\right)=2x_0^2+\left(2-3a\right)x_0+2-3a=0\end{array}\right.\) (*)

Để từ N kẻ được 3 tiếp tuyến đến (C) thì phương trình \(f\left(x_0\right)=0\) phải có hệ nghiệm phân biệt khác 1

Điều này tương đương với :

\(\begin{cases}\Delta=\left(2-3a\right)^2-8\left(2-3a\right)>0\\g\left(1\right)6-6a\ne0\end{cases}\) \(\Leftrightarrow a\in\left(-\infty;-2\right)\cup\left(\frac{2}{3};+\infty\right)\backslash\left\{1\right\}\)

Giả sử \(x_3=1\) thì \(x_1;x_2\) là nghiệm phương trình (*) nên theo Viet ta có :

\(\begin{cases}x_1+x_2=\frac{3a-2}{2}\\x_1.x_2=\frac{2-3a}{2}\end{cases}\)

Ta có \(x_1^3+x_2^3+x_3^3=21\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=20\)

                                      \(\Leftrightarrow\left(3a-2\right)^3+6\left(3a-2\right)^2-160=0\)

                                      \(\Leftrightarrow3a-2=4\Leftrightarrow a=2\) (thỏa mãn)

Vậy ta có \(N\left(2;0\right)\)

8 tháng 11 2017

câu này trình bày như thế nào

24 tháng 3 2016

Ta có \(y'=3x^2-6\left(m+1\right)x+9\)

Hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) \(\Leftrightarrow\) phương trình \(y'=0\) có hai nghiệm phân biệt là  \(x_1,x_2\)

\(\Leftrightarrow\) \(x^2-2\left(m+1\right)x+3=0\) có hai nghiệm phân biêt  \(x_1,x_2\) \(\Leftrightarrow\Delta'=\left(m+1\right)^2-3\Leftrightarrow\begin{cases}m>-1+\sqrt{3}\\m<-1-\sqrt{3}\end{cases}\) (1)Theo định lí Viet ta có  \(x_1+x_2=2\left(m+1\right)\) \(x_1,x_2=3\)Khi đó \(\left|x_1-x_2\right|\le2\)  \(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\le4\)                        \(\Leftrightarrow4\left(m+1\right)^2-12\le4\)                        \(\Leftrightarrow\left(m+1\right)^2\le4\)                        \(\Leftrightarrow-3\le m\)\(\le1\) (2)Từ (1) và (2) suy ra giá trị của m là \(-3\le m<-1-\sqrt{3}\) và\(-1+\sqrt{3}\)<m\(\le1\)  
7 tháng 6 2019

Hoành độ giao điểm của đồ thị hàm số với trục hoành là nghiệm của phương trình:

\(\frac{1}{3}x^3-mx^2-x+m+\frac{2}{3}=0\left(1\right)\)\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{3}x^2+\left(\frac{1}{3}-m\right)x-m-\frac{2}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\frac{1}{3}x^2+\left(\frac{1}{3}-m\right)x-m-\frac{2}{3}=0\left(2\right)\end{matrix}\right.\)

Để pt (1) có 3 nghiệm phân bieetk <=> pt( 2) có 2 nghiệm phân biệt khác 1

=> Đưa về bài toán pt bậc 2 sử dụng định lí Viet để làm bài trên

25 tháng 3 2016

Hàm số có cực đại và cực tiểu

\(\Leftrightarrow f'\left(x\right)=x^2-2mx+m=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2-m>0\Leftrightarrow m\in D=\left(-\infty,0\right)\cup\left(1,+\infty\right)\) (*)

Với điều kiện này thì \(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số \(f\left(x\right)\) đạt cực trị tại  \(x_1,x_2\). Theo định lí Viet ta có : \(x_1+x_2=2m;x_1x_2=m\) Suy ra :

\(\left|x_1-x_2\right|\ge8\Leftrightarrow\left|x_1-x_2\right|^2\ge64\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge64\Leftrightarrow4m^2-4m\ge64\)

\(\Leftrightarrow m^2-m-16\ge0\Leftrightarrow m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\) (thỏa mãn (*))

Vậy để \(\left|x_1-x_2\right|\ge8\) thì \(m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\)

 
27 tháng 4 2016

Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d

\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)

Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của  \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)

Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của  \(\Delta\)

Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow m^2+20m+25=0\)

                         \(\Leftrightarrow m=-10\pm5\sqrt{3}\)