K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

câu a: khi m= 2 => y=2x+2

y y=2x+2 x -1 2 0

với x=0=> y =2

với y=0 =>x -1

câu b : y = xm+2 cắt ox,oy lần lượt tại A,B mà tam giác OAB cân tại O nên OB=OA \(OA^2=OB^2\)

Y X 0 A B

Với x=0=>y=2 => A(0,2) => \(0A=\sqrt{0^2+2^2}=2\)

Với y=0=> x= \(x=\frac{-2}{m}\)nên \(B\left(\frac{-2}{m},0\right)\) ,\(OB=\sqrt{\frac{4}{m^2}+0^2}=\sqrt{\frac{4}{m^2}}\)

theo giả thiết OA=OB nên \(\sqrt{\frac{4}{m^2}}=\sqrt{4}\Leftrightarrow m^2=1\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

NV
25 tháng 10 2021

Để ĐTHS cắt cả 2 trục tọa độ \(\Rightarrow m\ne0\)

Khi đó ta có: giao điểm với trục hoành: \(mx+2=0\Rightarrow x=-\dfrac{2}{m}\)

Giao điểm với trục tung: \(y=m.0+2=2\)

a. \(A\left(-\dfrac{2}{m};0\right)\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2}{m}\right|\)

\(B\left(0;2\right)\Rightarrow OB=\left|y_B\right|=2\)

\(OA=OB\Rightarrow\left|\dfrac{2}{m}\right|=2\Rightarrow m=\pm1\)

b. \(C\left(-\dfrac{2}{m};0\right);D\left(0;2\right)\Rightarrow\left\{{}\begin{matrix}OC=\left|\dfrac{2}{m}\right|\\OD=2\end{matrix}\right.\)

\(tanC=\dfrac{OD}{OC}=\left|m\right|=2\Rightarrow m=\pm2\)

1 tháng 3 2020

-2 -1 0 1 2 3 4 1 2 3 -1 -2 (0,2) (1,0) H/ả chỉ mang t/c m.họa

a, Khi \(m=-1\Rightarrow y=-2x+2\)

b, Ta có: \(d ∩ Ox\) \(=A\left(-\frac{2}{m-1},0\right),\) \(d∩Oy=B(0,2)\)

Để \(\Delta OAB\) vuông cân:

\(\Rightarrow OA=OB\Rightarrow|-\frac{2}{m-1}|=|2|\)

\(\Rightarrow|\frac{2}{m-1}|=2\)

\(\Rightarrow|m-1|=1\)

\(\Rightarrow m-1=1\)

\(\Rightarrow m=2\)

Hoặc: \(m-1=-1\)

\(\Rightarrow m=0\)

27 tháng 12 2022

a, Hàm số đồng biến khi m - 2 > 0 => m > 2

b, Đồ thị hàm số y = ( m-2)x + m song song với y = -x - 1

⇔ m - 2 =  -1 ; m # -1=>  m = 1

với m = 1 thì đồ thị hàm số y = ( m-2)x + m có dạng y = -x + 1 và song song với đồ thị y = -x -1

c, Đồ thị hàm số y = (m-2)x + m cắt trục hoành tại điểm có tung độ bằng 0; 

nên y = 0 => (m-2)x + m = 0 => x = -m/(m-2) 

Đồ thị hàm số cắt trục Ox tại A(-\(\dfrac{m}{m-2}\); 0)

Độ dài đoạn OA là |-\(\dfrac{m}{m-2}\)|

Đồ thị hàm số cắt trục Oy tại điểm có hoành độ bằng 0 nên 

x=0; y = m 

Giao đồ thị với trục Oy là điểm B( 0;m)

Độ dài đoạn OB là |m|

Tam giác OAB cân ⇔ | -\(\dfrac{m}{m-2}\)| = |m|

                               \(\Leftrightarrow\) | \(\dfrac{m}{m-2}\)| =|m|

                                \(\Leftrightarrow\) |m-2| = 1 \(\Leftrightarrow\)  \(\left[{}\begin{matrix}m-2=1\\m-2=-1\end{matrix}\right.\) \(\Leftrightarrow\)  \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)

vậy với m \(\in\){ 1; 3} thì đồ thị hàm số cắt trục Ox, Oy theo thứ tự tại hai điểm A và B sao cho tam giác OAB cân tại O

a: Thay y=0 vào (1), ta được:

2x-1=0

hay \(x=\dfrac{1}{2}\)

Thay x=0 vào (1), ta được:

\(y=2\cdot0-1=-1\)

Vậy: \(A\left(\dfrac{1}{2};0\right)\); B(0;-1)

Thay y=0 vào (2), ta được:

x-1=0

hay x=1

Thay x=0 vào (2), ta được:

y=0-1=-1

Vậy: M(1;0); N(0;-1)

20 tháng 11 2023

1: Bạn bổ sung đề bài đi bạn

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)

=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)

=>OB=4

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{4}{\left|2m-1\right|}=4\)

=>\(\dfrac{1}{\left|2m-1\right|}=1\)

=>\(\left|2m-1\right|=1\)

=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

20 tháng 11 2023

Với m=1 nha bn mik thíu

 

Để tìm m để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta cần xác định tọa độ của A và B.

Điểm A nằm trên trục Ox, nên tọa độ của A là (x_A, 0). Thay vào phương trình hàm số y = mx + 2, ta có:

0 = mx_A + 2
=> mx_A = -2
=> x_A = -2/m

Điểm B nằm trên trục Oy, nên tọa độ của B là (0, y_B). Thay vào phương trình hàm số y = mx + 2, ta có:

y_B = m*0 + 2
=> y_B = 2

Chu vi tam giác OAB được tính bằng công thức chu vi tam giác:

chu_vi = AB + OA + OB

Với OA = x_A và OB = y_B, ta có:

chu_vi = AB + x_A + y_B

chu_vi = AB + (-2/m) + 2

chu_vi = AB - (2/m) + 2

Theo đề bài, chu vi tam giác OAB là 3 + căn 5, nên ta có:

3 + căn 5 = AB - (2/m) + 2

căn 5 = AB - (2/m) + 1

AB = căn 5 + (2/m) - 1

Ta đã có tọa độ của A và B, và chu vi tam giác OAB. Giờ ta sẽ tính độ dài AB:

AB = căn((x_A - 0)^2 + (y_B - 0)^2)

AB = căn((-2/m)^2 + 2^2)

AB = căn(4/m^2 + 4)

AB = căn(4(1/m^2 + 1))

AB = 2căn(1/m^2 + 1)

So sánh với công thức đã tính được trước đó:

AB = căn 5 + (2/m) - 1

Ta có:

2căn(1/m^2 + 1) = căn 5 + (2/m) - 1

Bình phương cả hai vế của phương trình:

4(1/m^2 + 1) = 5 + 4/m^2 + 1 - 4/m

4/m^2 + 4 = 6 + 4/m^2 - 4/m

8/m^2 = 2 - 4/m

Nhân cả hai vế của phương trình cho m^2:

8 = 2m^2 - 4

2m^2 = 12

m^2 = 6

m = ±√6

Vậy, để đồ thị hàm số cắt hai trục Ox và Oy tại A và B sao cho chu vi tam giác OAB là 3 + căn 5, ta có hai giá trị của m: √6 và -√6.

8 tháng 8 2023

chắc đúng không bạn

29 tháng 12 2023

a: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)

vậy: \(A\left(-\dfrac{3}{m+1};0\right)\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)

Vậy: B(0;3)

\(OA=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{3}{m+1}\right)^2}=\left|\dfrac{3}{m+1}\right|\)

\(OB=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=\sqrt{0+9}=3\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot3\cdot\dfrac{3}{\left|m+1\right|}=\dfrac{9}{2\left|m+1\right|}\)

Để \(S_{AOB}=9\) thì \(\dfrac{9}{2\left|m+1\right|}=9\)

=>2|m+1|=1

=>|m+1|=1/2

=>\(\left[{}\begin{matrix}m+1=\dfrac{1}{2}\\m+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)