K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

1-4 bạn tk ở đây: Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc... - Hoc24

5. \(m=1\Leftrightarrow y=-x-2\)

PT giao Ox tại A và Oy tại B của đths: \(\left\{{}\begin{matrix}y=0\Rightarrow x=-2\Rightarrow A\left(-2;0\right)\Rightarrow OA=2\\x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\Rightarrow OB=2\end{matrix}\right.\)

Gọi H là chân đường cao từ O tới đths

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

\(\Leftrightarrow OH^2=2\Leftrightarrow OH=\sqrt{2}\)

Vậy k/c từ O đến đt là \(\sqrt{2}\)

Áp dụng PTG: \(AB=\sqrt{OA^2+OB^2}=2\sqrt{2}\)

Vậy \(P_{ABC}=AB+BC+CA=4+2\sqrt{2};S_{ABC}=\dfrac{1}{2}OH\cdot AB=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{2}=2\left(đvdt\right)\)

21 tháng 11 2021

phần vẽ đồ thị đâu ạ

 

21 tháng 11 2021

\(1,\) Nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)

Tù \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)

\(2,\Leftrightarrow m-2+m-3=2\Leftrightarrow2m-5=2\Leftrightarrow m=\dfrac{7}{2}\)

\(3,\) PT giao Ox tại B và Oy tại C là \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m-2\right)x=3-m\Rightarrow x=\dfrac{3-m}{m-2}\Rightarrow A\left(\dfrac{3-m}{m-2};0\right)\Rightarrow OA=\left|\dfrac{3-m}{m-2}\right|\\x=0\Rightarrow y=m-3\Rightarrow B\left(0;m-3\right)\Rightarrow OB=\left|m-3\right|\end{matrix}\right.\)

(d) tạo với Ox góc 60 độ là góc nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)

Và \(\tan60^0=\dfrac{OB}{OA}=\left|m-3\right|\cdot\dfrac{\left|m-2\right|}{\left|3-m\right|}=\left|\dfrac{\left(m-3\right)\left(2-m\right)}{m-3}\right|=\left|2-m\right|\)

\(\Leftrightarrow\left|2-m\right|=\sqrt{3}\)

Mà \(m>2\Leftrightarrow2-m< 0\Leftrightarrow2-m=-\sqrt{3}\Leftrightarrow m=2+\sqrt{3}\)

\(4,\) PT hoành độ giao điểm tại hoành độ 3:

\(\left(m-2\right)x+m-3=2x-3\)

Thay \(x=3\Leftrightarrow3m-6+m-3=3\)

\(\Leftrightarrow4m=12\Leftrightarrow m=3\)

22 tháng 10 2018

Đáp án A

Vì hàm số đã cho là hàm số bậc nhất nên 2m + 1  ≠ 0 ⇔ m  ≠  (-1)/2 .

Gọi góc  α là góc tạo bởi đường thẳng và trục Ox . Theo giả thiết  α = 45 ° . Ta có:

tan α  = a ⇒ tan45 °  = 2m + 1

⇔ 1 = 2m + 1 ⇔ 0 = 2m ⇔ m = 0

19 tháng 9 2023

a) \(\left\{{}\begin{matrix}\left(d\right):y=-2x-5\\\left(d'\right):y=-x\end{matrix}\right.\)

loading...

b) \(\left(d\right)\cap\left(d'\right)=M\left(x;y\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=-2x-5\\y=-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=5\end{matrix}\right.\)

\(\Rightarrow M\left(-5;5\right)\)

c) Gọi \(\widehat{M}=sđ\left(d;d'\right)\)

\(\left(d\right):y=-2x-5\Rightarrow k_1-2\)

\(\left(d'\right):y=-x\Rightarrow k_1-1\)

\(tan\widehat{M}=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{-2+1}{1+\left(-2\right).\left(-1\right)}\right|=\dfrac{1}{3}\)

\(\Rightarrow\widehat{M}\sim18^o\)

19 tháng 9 2023

d) \(\left(d\right)\cap Oy=A\left(0;y\right)\)

\(\Leftrightarrow y=-2.0-5=-5\)

\(\Rightarrow A\left(0;-5\right)\)

\(OA=\sqrt[]{0^2+\left(-5\right)^2}=5\left(cm\right)\)

\(OM=\sqrt[]{5^2+5^2}=5\sqrt[]{2}\left(cm\right)\)

\(MA=\sqrt[]{5^2+10^2}=5\sqrt[]{5}\left(cm\right)\)

Chu vi \(\Delta MOA:\)

\(C=OA+OB+MA=5+5\sqrt[]{2}+5\sqrt[]{5}=5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)\left(cm\right)\)

\(\Rightarrow p=\dfrac{C}{2}=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}p-OA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5=\dfrac{5\left(\sqrt[]{2}+\sqrt[]{5}-1\right)}{2}\\p-OB=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{2}=\dfrac{5\left(-\sqrt[]{2}+\sqrt[]{5}+1\right)}{2}\\p-MA=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}-5\sqrt[]{5}=\dfrac{5\left(\sqrt[]{2}-\sqrt[]{5}+1\right)}{2}\end{matrix}\right.\)

\(p\left(p-MA\right)=\dfrac{5\left(1+\sqrt[]{2}+\sqrt[]{5}\right)}{2}.\dfrac{5\left(1+\sqrt[]{2}-\sqrt[]{5}\right)}{2}\)

\(\Leftrightarrow p\left(p-MA\right)=\dfrac{25\left[\left(1+\sqrt[]{2}\right)^2-5\right]}{4}=\dfrac{25.2\left(\sqrt[]{2}-1\right)}{4}=\dfrac{25\left(\sqrt[]{2}-1\right)}{2}\)

\(\left(p-OA\right)\left(p-OB\right)=\dfrac{25\left[5-\left(\sqrt[]{2}-1\right)^2\right]}{4}\)

\(\Leftrightarrow\left(p-OA\right)\left(p-OB\right)=\dfrac{25.2\left(\sqrt[]{2}+1\right)}{4}=\dfrac{25\left(\sqrt[]{2}+1\right)}{4}\)

Diện tích \(\Delta MOA:\)

\(S=\sqrt[]{p\left(p-OA\right)\left(p-OB\right)\left(p-MA\right)}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25\left(\sqrt[]{2}-1\right)}{2}.\dfrac{25\left(\sqrt[]{2}+1\right)}{2}}\)

\(\Leftrightarrow S=\sqrt[]{\dfrac{25^2}{2^2}}=\dfrac{25}{2}=12,5\left(cm^2\right)\)

22 tháng 10 2023

1: Khi m=2 thì y=(2-1)x+2=x+2

Vẽ đồ thị:

loading...

\(tan\alpha=a=1\)

=>\(\alpha=45^0\)

2: Thay x=1 và y=0 vào (d), ta được:

\(1\left(m-1\right)+m=0\)

=>2m-1=0

=>m=1/2

3:

y=(m-1)x+m

=mx-x+m

=m(x+1)-x

Điểm mà (d) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}x+1=0\\y=-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

16 tháng 8 2021

Ta có : tg60=m-1

\({\sqrt{3}=m-1} \) \(->m=\sqrt{3} +1\)

\(tan120=3-2m <=> -\sqrt{3}=3-2m \)

m=\(\frac{3+\sqrt{3}}{2}\)

 

 

loading...  loading...  loading...  loading...  loading...  loading...  loading...