Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT hoành độ giao điểm:
$(m-3)x+3m-1=2x+10$
$\Leftrightarrow (m-5)x+3m-11=0(*)$
Để 2 đt cắt nhau tại điểm có hoành độ $12$ thì PT $(*)$ có nghiệm $x=12$
$\Leftrightarrow (m-5).12+3m-11=0$
$\Leftrightarrow m=\frac{71}{15}$
Thay x=-11 và y=0 vào (d), ta được:
-11(m-3)+2m-5=0
=>-11m+33+2m-5=0
=>-9m+28=0
=>m=28/9
=>(d): y=1/9x+56/9-5=1/9x+11/9
â ) hàm số y = ( 2m - 1 )x + m + 2 đồng biến <=> a > 0
<=> 2m - 1 > 0
<=> 2m > 1
<=> m > \(\frac{1}{2}\)
Vay : khi m > \(\frac{1}{2}\) thì hàm số trên đồng biến
Đồ thị hàm số đã cho cắt trục hoành tịa điểm có hoành độ bằng \(\frac{3}{4}\)nên
\(0=\left(2-3m\right).\frac{3}{4}+m^2-1\)
\(\Leftrightarrow m^2-\frac{9}{4}m+\frac{1}{2}=0\)
\(\Leftrightarrow4m^2-9m+2=0\)
\(\Leftrightarrow4m^2-8m-m+2=0\)
\(\Leftrightarrow\left(4m-1\right)\left(m-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{4}\\m=2\end{cases}}\).
(d) cắt trục hoành độ là 1:
⇒ \(x=1\)
Và hàm số: \(y=0\)
Thay \(x=1\) tại giá trị hàm số \(y=0\)
Ta có:
\(y=\left(m-3\right)\cdot1+3m-1=0\)
\(\Leftrightarrow\left(m-3\right)+3m-1=0\)
\(\Leftrightarrow m-3+3m-1=0\)
\(\Leftrightarrow4m-4=0\)
\(\Leftrightarrow4m=4\)
\(\Leftrightarrow m=1\)
Vậy: ...
3: Thay x=1 và y=0 vào (d), ta được:
m-3+3m-1=0
=>4m-4=0
=>m=1