Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : xy + yz +zx = 0
* yz = -xy-zx
\(\Rightarrow\)*xy = - yz - zx
*zx= -xy-yz
ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)
M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)
M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)
M = -y - x - x - z - y - z
M = -2y - 2x - 2z
M = -2( x+y+z )
mà x+y+z=-1
M = (-2) . (-1)
M =2
Bạn tham khảo tại đây:
Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)
\(\Rightarrow yz+zx+xy=0\)
Ta có : \(x^2+2yz=x^2+yz+yz\)
\(=x^2+yz-zx-xy\)
\(=x\left(x-z\right)-y\left(x-z\right)\)
\(=\left(x-y\right)\left(x-z\right)\)
Tương tự : \(y^2+2xz=y^2+xz+xz\)
\(=y^2+xz-xy-yz\)
\(=y\left(y-x\right)+z\left(x-y\right)\)
\(=\left(x-y\right)\left(z-y\right)\)
\(z^2+2xy=\left(x-z\right)\left(y-z\right)\)
\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\) \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow xy=-yz-zx;yz=-xy-zx;zx=-xy-yz\)
Ta có: x2+2yz=x2+yz+yz=x2+yz-xy-zx=x(x-y)-z(x-y)=(x-y)(x-z)
Tương tự: \(y^2+2xz=\left(y-x\right)\left(y-z\right);z^2+2xy=\left(z-x\right)\left(z-y\right)\)
A= \(\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)=\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)
\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{xy\left(x-y\right)-xz\left(x-y+y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{xy\left(x-y\right)-xz\left(x-y\right)-xz\left(y-z\right)+yz\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)\(=\frac{\left(xy-xz\right)\left(x-y\right)-\left(xz-yz\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\frac{x\left(y-z\right)\left(x-y\right)-z\left(x-y\right)\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)
Vì xy + yz + zx = 1 ta có :
\(\frac{x-y}{z^2+1}+\frac{y-z}{x^2+1}+\frac{z-x}{y^2+1}=\frac{x-y}{z^2+xy+yz+zx}+\frac{y-z}{x^2+xy+yz+zx}+\frac{z-x}{y^2+xy+yz+zx}\)
\(=\frac{x-y}{\left(y+z\right)\left(z+x\right)}+\frac{y-z}{\left(x+y\right)\left(x+z\right)}+\frac{z-x}{\left(y+z\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(x+z\right)\left(z-x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(ĐPCM)
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{2xy}\\ =\frac{1}{4}+\frac{1}{2xy}\ge\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\)
Dấu = xảy ra khi x=y=2
P = \(\frac{x-y}{x+y}\)
P2 = \(\frac{x^2+y^2-2xy}{x^2+y^2+2xy}\)
= \(\frac{\frac{50}{7}xy-2xy}{\frac{50}{7}xy+2xy}\)
= \(\frac{\left(\frac{50}{7}-2\right)xy}{\left(\frac{50}{7}+2\right)xy}\)
= \(\frac{36}{7}\frac{7}{64}\)= \(\frac{36}{64}\)
=>
P = \(\frac{6}{8}\)= \(\frac{3}{4}\)
P = \(-\frac{6}{8}\)= \(-\frac{3}{4}\)