K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 11 2019

Hic hic nhìn cái đề muốn nản

\(\left(C_1\right)\) : \(y=3-\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\)

Xét \(\left(C_2\right)\):

- Với \(x>-1\Rightarrow y=m+1\)

Phương trình hoành độ giao điểm:

\(3-\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}=m+1\)

\(\Leftrightarrow f\left(x\right)=2-\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}=m\)

\(f'\left(x\right)=\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+2\right)^2}+\frac{1}{\left(x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\lim\limits_{x\rightarrow+\infty}=2\Rightarrow f\left(x\right)< 2\) \(\forall x>-1\)

Hơn nữa hàm \(f\left(x\right)\) liên tục, xác định khi \(x>-1\)

\(\Rightarrow y=m\) cắt \(y=f\left(x\right)\) tại 1 điểm với \(m< 2\), \(y=m\) không cắt \(y=f\left(x\right)\) với \(m\ge2\) (1)

- Với \(x\le-1\) \(\Rightarrow\left(C_2\right):y=-2x-1+m\)

Phương trình hoành độ giao điểm:

\(g\left(x\right)=4-\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}+2x=m\)

\(\Rightarrow g'\left(x\right)=\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+2\right)^2}+\frac{1}{\left(x+3\right)^2}+2>0\)

\(\Rightarrow g\left(x\right)\) đồng biến trên từng khoảng xác định

Ta có BBT của \(g\left(x\right)\) như sau:

Hỏi đáp Toán

\(\Rightarrow y=m\) luôn cắt \(y=g\left(x\right)\) tại 3 điểm phân biệt (2)

Từ (1) và (2) ta có kết luận:

- Với \(m< 2\) thì \(\left(C_1\right)\)\(\left(C_2\right)\) cắt nhau tại 4 điểm phân biệt

- Với \(m\ge2\) thì \(\left(C_1\right)\)\(\left(C_2\right)\) cắt nhau tại 3 điểm phân biệt

28 tháng 7 2017

Đáp án A

NV
27 tháng 10 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Dân Lập - Toán lớp 12 | Học trực tuyến

27 tháng 6 2019

Đường tròn C 1  có tâm I 1 1 ; 2  và bán kính R 1   =   1 .

Đường tròn C 2  có tâm I 2 - 1 ; 0  và bán kính R 2   =   1 .

Chọn B

21 tháng 4 2016

Ta có \(d:y=mx-m-2\)

Hoành độ giao điểm là nghiệm của phương trình :

\(\frac{x-3}{1-x}=mx-m-2\Leftrightarrow\begin{cases}x\ne1\\mx^2-\left(2m+1\right)x+m-1=0\end{cases}\)

Điều kiện để cắt nhau tại hai điểm phân biệt là : \(\begin{cases}m\ne0\\m>-\frac{1}{8}\end{cases}\)

Gọi \(M\left(x_1;y_1\right);N\left(x_2;y_2\right)\) khi đó \(\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1x_2=\frac{m-1}{2}\end{cases}\)

Ta có \(\overrightarrow{AM}=-2\overrightarrow{AN}\Rightarrow x_1=3-2x_2\)

Từ đó ta có m = 1

6 tháng 4 2016

\(\frac{2x-1}{-x-1}=-2x+m\Leftrightarrow\begin{cases}2x^2-\left(m+4\right)x+1=0\left(1\right)\\x\ne1\end{cases}\)

Đường thẳng y=-2x+m cắt (C) tại 2 điểm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 1

\(\Leftrightarrow\begin{cases}\left(m+4\right)^2-8\left(m+1\right)>0\\-1\ne0\end{cases}\) \(\Leftrightarrow m^2+8>0\) với mọi m

Vậy với mọi m, đường thẳng y=x+m luôn cắt đồ thị C tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1\ne x_2\)

Theo Viet : \(x_1+x_2=\frac{4+m}{2},x_1.x_2=\frac{m+1}{2}\)

\(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\Leftrightarrow\frac{m+1}{2}-4\left(\frac{m+4}{2}\right)=\frac{7}{2}\Leftrightarrow m=-\frac{22}{3}\)

Vậy \(m=-\frac{22}{3}\) thì đường thẳng \(y=-2x+m\) cắt đồ thì (C) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\)

21 tháng 4 2016

Phương trình hoành độ giao điểm của (C) và Ox :

\(\frac{mx^2+x+m}{x-1}=0\Leftrightarrow mx^2+x+m=0\left(1\right)\)\(x\ne1\)

Đặt \(f\left(x\right)=mx^2+x+m\)

(C) cắt Ox tại 2 điểm phân biệt có hoành độ dương

\(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt khác 1

\(\Leftrightarrow\begin{cases}m\ne0\\\Delta=1-4m^2>0\\f\left(1\right)=1+2m\ne0\end{cases}\)  \(\Leftrightarrow\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\)

Vậy với \(\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\) thì điều kiện bài toán thỏa mãn