K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

a: Xét tứ giác OAO'B có

OA=O'A=O'B=OB=R

nên OAO'B là hình thoi

b: Xét ΔOAO' có OA=O'A=OO'=R

nên ΔOAO' đều

=>\(\widehat{OAO'}=60^0\)

AOBO' là hình thoi

=>\(\widehat{OBO'}=\widehat{OAO'}=60^0\) và \(\widehat{AOB}=\widehat{AO'B}\)

AOBO' là hình thoi

=>\(\widehat{AOB}+\widehat{OAO'}=180^0\)

=>\(\widehat{AOB}=120^0\)

=>\(\widehat{AO'B}=120^0\)

Xét (O) có

\(\widehat{AOB}\) là góc ở tâm chắn cung AB

\(\widehat{AOB}=120^0\)

Do đó: sđ cung nhỏ AB=120 độ

sđ cung lớn AB trong (O) là:

360-120=240 độ

Xét (O') có

\(\widehat{AO'B}=120^0\)

\(\widehat{AO'B}\) là góc ở tâm chắn cung AB

Do đó: sđ cung nhỏ AB=120 độ

sđ cung lớn AB trong (O') là:

360-120=240 độ

c: ΔAOO' đều nên \(S_{AOO'}=\dfrac{AO^2\cdot\sqrt{3}}{4}=R^2\cdot\dfrac{\sqrt{3}}{4}\)

AOBO' là hình thoi

=>\(S_{AOBO'}=2\cdot S_{AOO'}\)

=>\(S_{AOBO'}=2\cdot\dfrac{R^2\sqrt{3}}{4}=\dfrac{R^2\sqrt{3}}{2}\)

9 tháng 11 2021

loading...  

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó:AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

từ (1) và (2) suy ra OA\(\perp\)BC(3)

b: Xét (O) có

ΔDBC nội tiếp

DC là đường kính

Do đó: ΔDBC vuông tại B

=>BC\(\perp\)BD(4)

Từ (3) và (4) suy ra BD//OA

6 tháng 5 2018

chi oi

ff

13 tháng 1 2022

Gọi I là giao của OO' với AB

Ta có

OA=O'A=OB=O'B=R => OAO'B là hình thoi (Tứ giác có 4 cạnh bằng nhau là hình thoi)

\(\Rightarrow AB\perp OO'\)(trong hình thoi 2 đường chéo vuông góc)

Ta có OO'=R => OI=OO'/2=R/2 (trong hình thoi hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét tg vuông AOI có

\(AI=\sqrt{OA^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\frac{R\sqrt{3}}{2}=\frac{AB}{2}\Rightarrow AB=R\sqrt{3}\)

\(\Rightarrow S_{OAO'B}=\frac{OO'.AB}{2}=\frac{R.R\sqrt{3}}{2}=\frac{R^2\sqrt{3}}{2}\)