K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

Gọi I là giao của OO' với AB

Ta có

OA=O'A=OB=O'B=R => OAO'B là hình thoi (Tứ giác có 4 cạnh bằng nhau là hình thoi)

\(\Rightarrow AB\perp OO'\)(trong hình thoi 2 đường chéo vuông góc)

Ta có OO'=R => OI=OO'/2=R/2 (trong hình thoi hai đường chéo cắt nhau tại trung điểm mỗi đường)

Xét tg vuông AOI có

\(AI=\sqrt{OA^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\frac{R\sqrt{3}}{2}=\frac{AB}{2}\Rightarrow AB=R\sqrt{3}\)

\(\Rightarrow S_{OAO'B}=\frac{OO'.AB}{2}=\frac{R.R\sqrt{3}}{2}=\frac{R^2\sqrt{3}}{2}\)

Câu 9: B

Câu 10: A

Câu 11; C

9 tháng 1 2022

ủa ủa câu 11 ở đâu mà chọn thế

17 tháng 11 2023

a: Xét tứ giác OAO'B có

OA=O'A=O'B=OB=R

nên OAO'B là hình thoi

b: Xét ΔOAO' có OA=O'A=OO'=R

nên ΔOAO' đều

=>\(\widehat{OAO'}=60^0\)

AOBO' là hình thoi

=>\(\widehat{OBO'}=\widehat{OAO'}=60^0\) và \(\widehat{AOB}=\widehat{AO'B}\)

AOBO' là hình thoi

=>\(\widehat{AOB}+\widehat{OAO'}=180^0\)

=>\(\widehat{AOB}=120^0\)

=>\(\widehat{AO'B}=120^0\)

Xét (O) có

\(\widehat{AOB}\) là góc ở tâm chắn cung AB

\(\widehat{AOB}=120^0\)

Do đó: sđ cung nhỏ AB=120 độ

sđ cung lớn AB trong (O) là:

360-120=240 độ

Xét (O') có

\(\widehat{AO'B}=120^0\)

\(\widehat{AO'B}\) là góc ở tâm chắn cung AB

Do đó: sđ cung nhỏ AB=120 độ

sđ cung lớn AB trong (O') là:

360-120=240 độ

c: ΔAOO' đều nên \(S_{AOO'}=\dfrac{AO^2\cdot\sqrt{3}}{4}=R^2\cdot\dfrac{\sqrt{3}}{4}\)

AOBO' là hình thoi

=>\(S_{AOBO'}=2\cdot S_{AOO'}\)

=>\(S_{AOBO'}=2\cdot\dfrac{R^2\sqrt{3}}{4}=\dfrac{R^2\sqrt{3}}{2}\)