Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x O y A M N
a/
Xét tg AOM có Ox đồng thời là đường cao và đường trung trực nên tg AOM cân tại O => OA=OM (trong tg có đường cao đồng thời là đường trung trực thì tg đó là tg cân)
Xét tg AON có Oy đồng thời là đường cao và đường trung trực nên tg AON cân tại O => OA=ON (trong tg có đường cao đồng thời là đường trung trực thì tg đó là tg cân)
=> OM=ON => tg OMN cân tại O
Đường trung trực của MN đồng thời cũng là đường cao của tg cân OMN xuất phát từ O (trong tg cân đường trung trực đồng thời là đường cao)
Mà O cố định nên đường trung trực của MN luôn đi qua điểm O cố định
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698
Ox là trung trực của MN
nên OM=ON
=>ΔOMN cân tại O
=>Ox là phân giác của góc MON(1)
Oy là trung trực của MP
nên OM=OP
=>ΔOMP cân tại O
=>Oy là phân giác của góc POM(2)
Từ (1), (2) suy ra góc NOP=2*90=180 độ
=>P,O,N thẳng hàng
Bạn tự vẽ hình nhé, mình chỉ viết đc lời giải thôi ^^ a/ Muốn chứng minh 3 điểm N,M,Q cùng nằm trên 1 đường tròn tâm O, ta phải chứng minh khoảng cách từ tâm O đến 3 điểm đó (bán kính) đều bằng nhau( tức ON=OM=OQ ) Chứng minh như sau: Gọi G là giao điểm giữa Ox và NM Ox là trung trực đoạn NM (giả thuyết) => 1/ Ox vuông góc NM => G1(góc NGO) = G2(MGO) = 90độ 2/ G là trung điểm NM => NG = GM Xét tam giác NGO và tam giác MGO có : NG=GM(chứng minh trên) } G1=G2(cmt) } GO chung } => 2 tam giác trên bằng nhau(cạnh góc c) => ON=OM(các cạnh tương ứng)(1) Tương tự như trên, chứng minh 2 tam giác MOH(H là giao điểm Oy và MQ, đặt tên tùy ý^^) và QOH bằng nhau để suy ra OM = OQ(2) Từ(1) và (2) => 3 cạnh bằng nhau b/ Có tam giác NGO = tam giác MGO(cmt) => O1(góc NOG) = O2(GOM) (các góc tương ứng) Có tam giác MOH = tam giác QOH (cmt) => O3(MOH) = O4(HOQ) (các góc tương ứng) Có O2 + O3 = xOy => O2 + O3 =60độ Mà O1=O2(cmt) ; O3=O4(cmt) => O1+O4 = 60 độ Có: NOQ = O1 + xOy + O4 = O1 +O2 +O3 +O4 => NOQ = 60 + 60 = 120độ Nhớ ^^
x A O y M N
\(O\in Ox\)\(\Rightarrow OM=OA\)\(\left(1\right)\)(Ox là đường trung trực của MA)
\(O\in Oy\)\(\Rightarrow OA=OM\)\(\left(2\right)\)(Oy là dường trung trực AN)
Từ \(\left(1\right);\left(2\right)\Rightarrow OM=ON\)
Vì\(OM=ON\)\(\Rightarrow O\in\)đường trung trực của MN (O cách đều hai mút M và N)
Vậy đường trung trực của MN luôn đi qua 1 điểm là O.
b là sao bạn mk ko hiểu?