Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x A O y M N
\(O\in Ox\)\(\Rightarrow OM=OA\)\(\left(1\right)\)(Ox là đường trung trực của MA)
\(O\in Oy\)\(\Rightarrow OA=OM\)\(\left(2\right)\)(Oy là dường trung trực AN)
Từ \(\left(1\right);\left(2\right)\Rightarrow OM=ON\)
Vì\(OM=ON\)\(\Rightarrow O\in\)đường trung trực của MN (O cách đều hai mút M và N)
Vậy đường trung trực của MN luôn đi qua 1 điểm là O.
b là sao bạn mk ko hiểu?
x O y A M N
a/
Xét tg AOM có Ox đồng thời là đường cao và đường trung trực nên tg AOM cân tại O => OA=OM (trong tg có đường cao đồng thời là đường trung trực thì tg đó là tg cân)
Xét tg AON có Oy đồng thời là đường cao và đường trung trực nên tg AON cân tại O => OA=ON (trong tg có đường cao đồng thời là đường trung trực thì tg đó là tg cân)
=> OM=ON => tg OMN cân tại O
Đường trung trực của MN đồng thời cũng là đường cao của tg cân OMN xuất phát từ O (trong tg cân đường trung trực đồng thời là đường cao)
Mà O cố định nên đường trung trực của MN luôn đi qua điểm O cố định
Ox là trung trực của MN
nên OM=ON
=>ΔOMN cân tại O
=>Ox là phân giác của góc MON(1)
Oy là trung trực của MP
nên OM=OP
=>ΔOMP cân tại O
=>Oy là phân giác của góc POM(2)
Từ (1), (2) suy ra góc NOP=2*90=180 độ
=>P,O,N thẳng hàng