Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOAB cân tại O
mà OC là phân giác
nên OC vuông góc AB và C là trung điểm của AB
b: Xét tứ giác OAMB có
C là trung điểm chung của OM và AB
=>OAMB là hình bình hành
=>OA//MB và OB//MA
a: Gọi H là một điểm bất kỳ trên tia Ot
Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
mà OH là tia phân giác ứng với cạnh AB
nên Ot là đường cao ứng với cạnh AB
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
b: Xét ΔOBD có \(\dfrac{OA}{OB}=\dfrac{OC}{OD}\)
nên AC//BD
c: Ta có: ΔOAD=ΔOCB
=>\(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC}\)
Ta có: \(\widehat{OAD}+\widehat{DAB}=180^0\)(hai góc kề bù)
\(\widehat{OCB}+\widehat{DCB}=180^0\)(hai góc kề bù)
mà \(\widehat{OAD}=\widehat{OCB}\)
nên \(\widehat{DAB}=\widehat{DCB}\)
Ta có: OA+AB=OB
OC+CD=OD
mà OA=OC và OB=OD
nên AB=CD
Xét ΔMAB và ΔMCD có
\(\widehat{MAB}=\widehat{MCD}\)
AB=CD
\(\widehat{MBA}=\widehat{MDC}\)
Do đó: ΔMAB=ΔMCD
=>MB=MD
Xét ΔOMB và ΔOMD có
OM chung
MB=MD
OB=OD
Do đó: ΔOMB=ΔOMD
=>\(\widehat{BOM}=\widehat{DOM}\)
=>\(\widehat{xOM}=\widehat{yOM}\)
=>OM là phân giác của góc xOy
d: Ta có: OB=OD
=>O nằm trên đường trung trực của BD(1)
Ta có: MB=MD
=>M nằm trên đường trung trực của BD(2)
Ta có: NB=ND
=>N nằm trên đường trung trực của BD(3)
Từ (1),(2),(3) suy ra O,M,N thẳng hàng
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
Suy ra: AC=BC và \(\widehat{OAC}=\widehat{OBC}\)
Ta có: \(\widehat{OAC}+\widehat{xAC}=180^0\)
\(\widehat{OBC}+\widehat{yBC}=180^0\)
mà \(\widehat{OAC}=\widehat{OBC}\)
nên \(\widehat{xAC}=\widehat{yBC}\)
b: Ta có: ΔOAC=ΔOBC
nên CA=CB
Ta có: OA=OB
nên O nằm trên đường trung trực của AB\(\left(1\right)\)
Ta có: CA=CB
nên C nằm trên đường trung trực của AB\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra OC là đường trung trực của AB
hay OC\(\perp\)AB
xet tam giac OBC va tam giac OAC ta co
OC=OC ( canh chung)
OB=OA ( gt)
CB=CA ( gt)
--> tam giac OBC= tam giac OAC ( c=c=c)