Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT\(\Delta OMN\)VÀ \(\Delta MPO\) CÓ
OM LÀ CẠNH CHUNG
GÓC N= GÓC P =90*
O1=O2 VÌ OM LÀ TIA P/G CỦA GÓC O
=>\(\Delta OMN\)=\(\Delta OPM\)(GCG)
B;VÌ TAM GIÁC OMN=TAM GIÁC OMP
=>ON=OP (cạnh tương ứng)
c;
Xét \(\Delta OAB\)và \(\Delta OAC\)có :
\(\widehat{OBA}=\widehat{OCA\left(=90^o\right)}\)
OA là cạnh chung
\(\widehat{O_1}=\widehat{O_2}\left(gt\right)\)
\(\Rightarrow\Delta OAB=\Delta OAC\left(ch-gn\right)\)
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAF vuông tại A và ΔMBE vuông tại B có
MA=MB
\(\widehat{AMF}=\widehat{BME}\)
Do đó: ΔMAF=ΔMBE
=>MF=ME
b:
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(1)
Ta có: MA=MB
=>M nằm trên đường trung trực của BA(2)
Từ (1) và (2) suy ra OM là đường trung trực của BA
=>OM\(\perp\)BA
a: Xet ΔOAP vuông tại A và ΔOBP vuông tại B co
OP chung
góc AOP=góc BOP
=>ΔOAP=ΔOBP
=>OA=OB
=>ΔOAB cân tại O
b: ΔOAB cân tại O
mà OP là phân giác
nên OP vuông góc AB