K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta OAC\)và \(\Delta OBC\)có:

         OA = OB (gt)

         \(\widehat{AOC}=\widehat{BOC}\)(Oz là tia p/g của \(\widehat{xOy}\))

         OC là cạnh chung

\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)

\(\Rightarrow AC=BC\)(2 cạnh tương ứng)

b) Ta có: \(\Delta OAC=\Delta OBC\)(theo a)

\(\Rightarrow\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)

hay \(\widehat{OAD}=\widehat{OBE}\)

Xét \(\Delta OAD\)và \(\Delta OBE\)có:

     \(\widehat{O}\)là góc chung

      OA = OB (gt)

      \(\widehat{OAD}=\widehat{OBE}\)(cmt)

\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)

=> AD = BE (2 cạnh tương ứng)

Mà AC = BC (theo a)

=> AD - AC = BE - BC

=> CD = CE

Xét \(\Delta ACE\)và \(\Delta BCD\)có:

        AC = BC (cmt)

        \(\widehat{ACE}=\widehat{BCD}\)(2 góc đối đỉnh)

        CE = CD (cmt)

\(\Rightarrow\Delta ACE=\Delta BCD\left(c.g.c\right)\)

18 tháng 5 2020

hình đâu bạn ei

8 tháng 11 2019

11 tháng 2 2021

Giải:

Hình bạn tự vẽ nhé.

a) Xét tam giác BDO và tam giác ACO có:

OD = OC (gt)

Góc O chung

AO = BO (gt)

=> Tam giác ACO = tam giác BDO (c.g.c)   (đpcm)

b) Ta có: BO = AO (gt)

              CO = DO (gt)

=> CO - BO = DO - AO

=> BC = AD

Vì tam giác BDO = tam giác ACO (chứng minh trên)

nên góc BDO = góc ACO (2 góc tương ứng)  hay góc ADI = góc BCI

       góc DBO = góc CAO (2 góc tương ứng)

Mà góc DBO + góc CBD = góc CAO + góc CAD = 180o

=> Góc CBD = góc CAD hay góc CBI = góc DAI

Xét tam giác BCI và tam giác ADI có:

Góc CBI = góc DAI (chứng minh trên)

BC = AD (chứng minh trên)

Góc BCI = góc ADI (chứng minh trên)

=> Tam giác BCI = tam giác ADI (g.c.g)

=> AI = BI (2 cạnh tương ứng)   (đpcm)

c) Ta có: tam giác BCI = tam giác ADI (chứng minh trên)

=> CI = DI (2 cạnh tương ứng)

Xét tam giác DIO và tam giác CIO có:

OI cạnh chung

DO = CO (gt)

CI = DI (chứng minh trên)

=> Tam giác CIO = tam giác DIO (c.c.c)

=> Góc DOI = góc COI (2 góc tương ứng)

hay góc IOx = góc IOy

Mà OI là tia nằm giữa 2 tia Ox, Oy

=> OI là tia phân giác của góc xOy   (đpcm)

11 tháng 2 2021

help me

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔBDC và ΔACD có 

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

Suy ra: \(\widehat{EBD}=\widehat{EAC}\)

Xét ΔEBD và ΔEAC có 

\(\widehat{EBD}=\widehat{EAC}\)

BD=AC

\(\widehat{BED}=\widehat{AEC}\)

Do đó: ΔEBD=ΔEAC

9 tháng 1 2019

Tính diện tích hình thang ABCD , biết diện tích tam BMC là 4,2

bạn bieét  làm ko

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔBDC và ΔACD có

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)

DC chung

Do đó: ΔBDC=ΔACD

Suy ra: \(\widehat{EAC}=\widehat{EBD}\)

Xét ΔEAC và ΔEBD có 

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

c: Xét ΔOEC và ΔOED có

OE chung

EC=ED

OC=OD

Do đó: ΔOEC=ΔOED

Suy ra: \(\widehat{COE}=\widehat{DOE}\)

hay OE là tia phân giác của góc xOy

a: Xét ΔOAC và ΔOBC có 

OA=OB

\(\widehat{AOC}=\widehat{BOC}\)

OC chung

Do đó: ΔOAC=ΔOBC

b: Ta có: ΔOAC=ΔOBC

nên AC=BC

22 tháng 12 2021

Hình vẽ trên òn đây là bài làm: a) Ta có: OC=OA+AC OD=OB+BD Mà OA=OB và AC=BD (gt) =>OC=OD Xét Δ OAD và Δ OBC có: OA=OB (gt) ˆ O góc chung

22 tháng 12 2021

a: Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

28 tháng 12 2023

a:

Ta có: OC=OA+AC

OD=OB+BD

mà OA=OB và AC=BD

nên OC=OD

Xét ΔOAD và ΔOBC có

OA=OB

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOBC

b: ta có: ΔOAD=ΔOBC

=>\(\widehat{OAD}=\widehat{OBC};\widehat{ODA}=\widehat{OCB}\)

Ta có: \(\widehat{OAD}+\widehat{DAC}=180^0\)(hai góc kề bù)

\(\widehat{OBC}+\widehat{DBC}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OBC}\)

nên \(\widehat{DAC}=\widehat{DBC}\)

Xét ΔEAC và ΔEBD có

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

c: Ta có: ΔEAC=ΔEBD

=>EC=ED

Xét ΔOEC và ΔOED có

OE chung

EC=ED

OC=OD

Do đó: ΔOEC=ΔOED

=>\(\widehat{COE}=\widehat{DOE}\)

=>\(\widehat{xOE}=\widehat{yOE}\)

=>OE là phân giác của góc xOy