K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2019

a) Xét \(\Delta OAC\)và \(\Delta OBC\)có:

         OA = OB (gt)

         \(\widehat{AOC}=\widehat{BOC}\)(Oz là tia p/g của \(\widehat{xOy}\))

         OC là cạnh chung

\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)

\(\Rightarrow AC=BC\)(2 cạnh tương ứng)

b) Ta có: \(\Delta OAC=\Delta OBC\)(theo a)

\(\Rightarrow\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)

hay \(\widehat{OAD}=\widehat{OBE}\)

Xét \(\Delta OAD\)và \(\Delta OBE\)có:

     \(\widehat{O}\)là góc chung

      OA = OB (gt)

      \(\widehat{OAD}=\widehat{OBE}\)(cmt)

\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)

=> AD = BE (2 cạnh tương ứng)

Mà AC = BC (theo a)

=> AD - AC = BE - BC

=> CD = CE

Xét \(\Delta ACE\)và \(\Delta BCD\)có:

        AC = BC (cmt)

        \(\widehat{ACE}=\widehat{BCD}\)(2 góc đối đỉnh)

        CE = CD (cmt)

\(\Rightarrow\Delta ACE=\Delta BCD\left(c.g.c\right)\)

18 tháng 5 2020

hình đâu bạn ei

6 tháng 3 2020

O A D x C I z B E y

Xét tam giác AOC và tam giác BOC

có OC chung

góc BOC= góc AOC (GT)

góc CBO = góc CAO = 900

suy ra tam giác AOC = tam giác BOC ( cạnh huyền- góc nhọn)

suy ra AC=BC ( hai cạnh tương ứng)

b) Xét tam giác BCE và tam giác ACD

có góc EBC = góc DAC = 900

AC=BC ( CMT)

góc BCE = góc ACD ( đối đỉnh)

suy ra am giác BCE =tam giác ACD (g.c.g)

suy ra CE=CD (hai cạnh tương ứng)

suy ra tam giác ECD cân tại C

c) 

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có

OC chung

góc AOC=góc BOC

=>ΔOAC=ΔOBC

=>OA=OB và CA=CB

b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có

CA=CB

góc ACD=góc BCE

=>ΔCAD=ΔCBE

=>CD=CE và AD=BE

c: Xét ΔOED có OA/AD=OB/BE

nên AB//ED

 

9 tháng 1 2022
9 tháng 1 2022

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔBDC và ΔACD có 

BD=AC

\(\widehat{BDC}=\widehat{ACD}\)

CD chung

Do đó: ΔBDC=ΔACD

Suy ra: \(\widehat{EBD}=\widehat{EAC}\)

Xét ΔEBD và ΔEAC có 

\(\widehat{EBD}=\widehat{EAC}\)

BD=AC

\(\widehat{BED}=\widehat{AEC}\)

Do đó: ΔEBD=ΔEAC