Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta OAC\)và \(\Delta OBC\)có:
OA = OB (gt)
\(\widehat{AOC}=\widehat{BOC}\)(Oz là tia p/g của \(\widehat{xOy}\))
OC là cạnh chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow AC=BC\)(2 cạnh tương ứng)
b) Ta có: \(\Delta OAC=\Delta OBC\)(theo a)
\(\Rightarrow\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)
hay \(\widehat{OAD}=\widehat{OBE}\)
Xét \(\Delta OAD\)và \(\Delta OBE\)có:
\(\widehat{O}\)là góc chung
OA = OB (gt)
\(\widehat{OAD}=\widehat{OBE}\)(cmt)
\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)
=> AD = BE (2 cạnh tương ứng)
Mà AC = BC (theo a)
=> AD - AC = BE - BC
=> CD = CE
Xét \(\Delta ACE\)và \(\Delta BCD\)có:
AC = BC (cmt)
\(\widehat{ACE}=\widehat{BCD}\)(2 góc đối đỉnh)
CE = CD (cmt)
\(\Rightarrow\Delta ACE=\Delta BCD\left(c.g.c\right)\)
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó: ΔOAC=ΔOBC
b: Ta có: ΔOAC=ΔOBC
nên AC=BC
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Giải:
Hình bạn tự vẽ nhé.
a) Xét tam giác BDO và tam giác ACO có:
OD = OC (gt)
Góc O chung
AO = BO (gt)
=> Tam giác ACO = tam giác BDO (c.g.c) (đpcm)
b) Ta có: BO = AO (gt)
CO = DO (gt)
=> CO - BO = DO - AO
=> BC = AD
Vì tam giác BDO = tam giác ACO (chứng minh trên)
nên góc BDO = góc ACO (2 góc tương ứng) hay góc ADI = góc BCI
góc DBO = góc CAO (2 góc tương ứng)
Mà góc DBO + góc CBD = góc CAO + góc CAD = 180o
=> Góc CBD = góc CAD hay góc CBI = góc DAI
Xét tam giác BCI và tam giác ADI có:
Góc CBI = góc DAI (chứng minh trên)
BC = AD (chứng minh trên)
Góc BCI = góc ADI (chứng minh trên)
=> Tam giác BCI = tam giác ADI (g.c.g)
=> AI = BI (2 cạnh tương ứng) (đpcm)
c) Ta có: tam giác BCI = tam giác ADI (chứng minh trên)
=> CI = DI (2 cạnh tương ứng)
Xét tam giác DIO và tam giác CIO có:
OI cạnh chung
DO = CO (gt)
CI = DI (chứng minh trên)
=> Tam giác CIO = tam giác DIO (c.c.c)
=> Góc DOI = góc COI (2 góc tương ứng)
hay góc IOx = góc IOy
Mà OI là tia nằm giữa 2 tia Ox, Oy
=> OI là tia phân giác của góc xOy (đpcm)
help me