Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) XÉT \(\Delta OAD=\Delta OBD\left(CH-GN\right)\Rightarrow DA=DB\)
B) \(\Rightarrow OA=OB\left(1\right)\Rightarrow\Delta OAB\)CÂN
C) XÉT \(\Delta ADM=\Delta BND\left(CGV-GNK\right)\Rightarrow DM=DN;AM=BN\left(2\right)\)
D) TỪ (1) VÀ (2) \(\Rightarrow OM=ON\)
XÉT \(\Delta OMH=\Delta ONH\left(C-G-C\right)\Rightarrow OHM=OHN=90^0\)
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC OAM = GÓC OBM=90*
OM CHUNG LÀ CẠNH HUYỀN CHUNG
MA=MB
=>TAM GIÂC OAM = TA GIÁC OBM (CH GN)
=>OA=OB
=>TAM GIÁC OAB CÂN TẠI A
B, XÉT TAM GIÁC MAD VÀ TAM GIÁC MBE CÓ
GÓC A=GÓC B =90*
GÓC M CHUNG
AD=BE
=>TAM GIÁC MAD=MBE
=>MD=ME
XÉT TAM GIÁC OAM VÀ TAM GIÁC OMB CÓ
GÓC A=GÓC B=90*
OM LÀ CẠNH HUYỀN CHUNG
GÓC O CHUNG]
=>TAM GIÁC OAM = TAM GIÁC OMB(CH-GN)
=>OA=OM(CẠNH TƯƠNG ỨNG)
=> TAM GIÁC OAB CÂN TẠI O
B,XÉT TAM GIÁC ADM VÀ TAM GIÁC MBE CÓ
GÓC A = GÓC B=90*
GÓC AMD= GÓC EMB
GÓC M CHUNG
=>TAM GIÁC ADM = TA GIÁC MEB(GCG)
=>MD=ME(đpcm)
Trả lời:
a)XétΔOBN và ΔOAN có:
ONchung
góc BON= góc AON( ON là tia phân giác góc xOy)
góc OBN = góc OAN (=90*)
→ΔOBN=ΔOAN(ch-gn)
→NA= NB( hai cạnh tương ứng)
b)Vì ΔOBN=ΔOAN(cmt)
→OB=OA( hai cạnh tương ứng)
→ΔOAB cân
c)Xét ΔOBD và ΔOAE có:
OB=OA ( cmt)
góc BOD=góc AOE
góc EBD= góc DAE(=90*)
→ΔOBD=ΔOAE(g.c.g)
→BD=AE( hai cạnh tương ứng)
Áp dụng hệ thức công đoạn thẳng ta có :
BD=NB+ND
AE=NA+NE
mà BD=AE(cmt)
NA=NB(cmt)
→ND=NE(đpcm)
d)Gọi giao điểm của ON và DElà K
Vì ΔOAE=ΔOBD(cmt)
→OD =OE( hai cạnh tương ứng )
Xét ΔOEK và ΔODK có:
góc EOK= góc DOK(ON là tia phân giác góc xOy)
OK chung
OE = OD( cmt)
→ΔEOK=ΔODK(c.g.c)
→góc EKO=góc DKO(hai góc tương ứng)
mà chúng kề bù
→ON⊥DE(đpcm)
* chú ý: "*" là độ
~Học tốt!~
cho góc nhọn xOy và N là 1 điểm thuộc tia phân giác của góc xOy . kẻ NA vuông góc với Ox (A thuộc Ox) , NB vuông góc với Oy (B thuộc Oy )
a)ta phải cm : NA=NB
b) tam giác OAB là tam giác gì ? vì sao ?
c) đường thẳng BN cắt Ox tại D , đường thẳng AN cắt Oy tại E . Cm : ND=NE
d) CM : ON vuông góc với DE
Trả lời:
a, ta có K là 1 điểm thuộc tia phân giác góc xOy
mà KA vuông góc với Ox và KB vuông góc với Oy (gt)
⇒ KA=KB (t/c tia phân giác của 1 góc)
b, Xét ΔOAK vuông tại A và Δ OBK vuông tại B có
OK là canh chung
góc AOK = góc BOK (gt)
⇒ 2 tam giác bằng nhau
⇒ OA = OB ( 2 cạnh tương ứng)
⇒ΔOAB cân tại O
c, Xét ΔAKD vuông tại A và Δ BKE vuông tại B
AK=BK (cmt)
góc AKD = góc BKE ( đối đỉnh)
⇒ 2 tam giác trên bằng nhau
⇒ KD = KE (đpcm)
d, ΔOAK =ΔOBK ⇒ góc OKA = góc OKB ( 2 góc tương ứng)
mà góc AKD = góc BKE ( đối đỉnh)
⇒ góc OKA + góc AKD = góc OKB + góc BKE ⇒ góc OKD = góc OKE
xét ΔOKD và OKE dễ thấy chúng bằng nhau theo th (g-c-g) ⇒ OD=OE ⇒ ΔODE cân tại O mà OK là phân giác góc DOE ⇒ OK là đường cao của DE ⇒ OK ⊥DE (đpcm)
~Học tốt!~
a) Xét tam giác vuông MOA và tam giác vuông MOB
có OM là cạnh chung
góc MOA=góc MOB (GT)
suy ra tam giác MOA = tam giác MOB (cạnh huyền-góc nhọn) (1)
suy ra MA=MB
b) từ (1) suy ra OA=OB suy ra tam giác OAB cân tại O (T/chất tam giác cân)
c) Chưa hết đề bài em nhé
Em tham khảo tại link dưới đây nhé.
Câu hỏi của trần thị thúy vân - Toán lớp 7 - Học toán với OnlineMath