Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)
Suy ra khẳng định $a$ đúng
Mệnh đề đảo là : "Nếu \(f\left(x\right)\) có một nghiệm bằng 1 thì \(a+b+c=0\)". "Điều kiện cần và đủ để \(f\left(x\right)=ax^2+bx+c\) có một nghiệm bằng 1 là \(a+b+c=0\)"
a/ Với \(m=-\frac{1}{2}\) pt vô nghiệm
Với \(m\ne-\frac{1}{2}\Rightarrow x=\frac{3m-2}{2m+1}\)
\(\Rightarrow0\le\frac{3m-2}{2m+1}\le1\Rightarrow\left\{{}\begin{matrix}\frac{3m-2}{2m+1}\ge0\\\frac{3m-2}{2m+1}-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3m-2}{2m+1}\ge0\\\frac{m-3}{2m+1}\le0\end{matrix}\right.\) \(\Rightarrow\frac{2}{3}\le m\le3\)
b/ \(\left(2m+1\right)x\ge3m-2\)
- Với \(m=-\frac{1}{2}\) BPT luôn đúng
- Với \(m>-\frac{1}{2}\Rightarrow x\ge\frac{3m-2}{2m+1}\)
\(\Rightarrow\frac{3m-2}{2m+1}\le2\Leftrightarrow\frac{-m-4}{2m+1}\le0\) \(\Rightarrow m>-\frac{1}{2}\)
- Với \(m< -\frac{1}{2}\Rightarrow x\le\frac{3m-2}{2m+1}\)
\(\Rightarrow\frac{3m-2}{2m+1}\ge-1\Leftrightarrow\frac{5m-1}{2m+1}\ge0\) \(\Rightarrow m< -\frac{1}{2}\)
Vậy với mọi m thì BPT luôn có nghiệm thuộc đoạn đã cho
a/ \(x^2-2x-3=-m\)
Đặt \(f\left(x\right)=x^2-2x-3\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=-4\) ; \(f\left(-1\right)=0\) ; \(f\left(3\right)=0\)
\(\Rightarrow\) Để pt có nghiệm trên khoảng đã cho thì \(-4\le-m\le0\Rightarrow0\le m\le4\)
b/ \(-x^2+2mx-m+1=0\)
\(\Delta'=m^2+m-1\ge0\Rightarrow\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m< 0\\x_1x_2=m-1>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy pt luôn có ít nhất 1 nghiệm \(x\ge0\) với \(\left[{}\begin{matrix}m\le\frac{-1-\sqrt{5}}{2}\\m\ge\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
c/ \(f\left(x\right)=2x^2-x-1=m\)
Xét hàm \(f\left(x\right)=2x^2-x-1\) trên \(\left[-2;1\right]\)
\(-\frac{b}{2a}=\frac{1}{4}\) ; \(f\left(\frac{1}{4}\right)=-\frac{9}{8}\) ; \(f\left(-2\right)=9\); \(f\left(1\right)=0\)
\(\Rightarrow\) Để pt có 2 nghiệm pb thuộc đoạn đã cho thì \(-\frac{9}{8}< m\le0\)
d/ \(f\left(x\right)=x^2-2x+1=m\)
Xét \(f\left(x\right)\) trên \((0;2]\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=1\); \(f\left(2\right)=1\)
Để pt có nghiệm duy nhất trên khoảng đã cho \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge-3\\x\le-4\end{matrix}\right.\\x\ge m\end{matrix}\right.\)
\(x^2+4x+3=x-m\)
\(\Leftrightarrow f\left(x\right)=x^2+3x+3=-m\)
Xét hàm \(f\left(x\right)\)
\(-\frac{b}{2a}=-\frac{3}{2}\) ; \(f\left(-\frac{3}{2}\right)=\frac{3}{4}\); \(f\left(-3\right)=3\); \(f\left(-4\right)=7\)
Để pt có 2 nghiệm thỏa mãn \(x\notin\left(-4;-3\right)\) thì \(\left[{}\begin{matrix}\frac{3}{4}< m\le3\\m\ge7\end{matrix}\right.\) (1)
Mặt khác \(x^2+3x+m+3=0\)
Để pt có 2 nghiệm thỏa mãn \(m\le x_1< x_2\) thì:
\(\left\{{}\begin{matrix}f\left(m\right)\ge0\\x_1+x_2>2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2+4m+3\ge0\\2m< -3\end{matrix}\right.\) \(\Rightarrow m\le-3\) (2)
Từ (1) và (2) suy ra ko tồn tại m thỏa mãn
a/ \(\left[{}\begin{matrix}\Delta>0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)
b/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}\Delta\le0\\a>0\end{matrix}\right.\end{matrix}\right.\)
c/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\le0\end{matrix}\right.\end{matrix}\right.\)
d/ \(\left[{}\begin{matrix}\Delta\ge0\\\left\{{}\begin{matrix}a< 0\\\Delta\ge0\end{matrix}\right.\end{matrix}\right.\)