\([0;1]\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2020

a/ Với \(m=-\frac{1}{2}\) pt vô nghiệm

Với \(m\ne-\frac{1}{2}\Rightarrow x=\frac{3m-2}{2m+1}\)

\(\Rightarrow0\le\frac{3m-2}{2m+1}\le1\Rightarrow\left\{{}\begin{matrix}\frac{3m-2}{2m+1}\ge0\\\frac{3m-2}{2m+1}-1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3m-2}{2m+1}\ge0\\\frac{m-3}{2m+1}\le0\end{matrix}\right.\) \(\Rightarrow\frac{2}{3}\le m\le3\)

b/ \(\left(2m+1\right)x\ge3m-2\)

- Với \(m=-\frac{1}{2}\) BPT luôn đúng

- Với \(m>-\frac{1}{2}\Rightarrow x\ge\frac{3m-2}{2m+1}\)

\(\Rightarrow\frac{3m-2}{2m+1}\le2\Leftrightarrow\frac{-m-4}{2m+1}\le0\) \(\Rightarrow m>-\frac{1}{2}\)

- Với \(m< -\frac{1}{2}\Rightarrow x\le\frac{3m-2}{2m+1}\)

\(\Rightarrow\frac{3m-2}{2m+1}\ge-1\Leftrightarrow\frac{5m-1}{2m+1}\ge0\) \(\Rightarrow m< -\frac{1}{2}\)

Vậy với mọi m thì BPT luôn có nghiệm thuộc đoạn đã cho

16 tháng 3 2016

ừm...để giải cái đã.Xem nào...
 

DD
24 tháng 1 2022

\(f\left(x\right)=x^2+2\left(m+1\right)x+m+3\)

Để \(f\left(x\right)\ge0\)với mọi \(x\inℝ\)thì: 

\(\hept{\begin{cases}a=1>0\\\Delta'=\left(m+1\right)^2-\left(m+3\right)\ge0\end{cases}}\Leftrightarrow m^2+m-2\ge0\)

\(\Leftrightarrow\left(m+2\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-2\end{cases}}\).

NV
12 tháng 5 2020

\(m=1\) pt có nghiệm \(x=-\frac{2}{3}\)

Với \(m\ne1\Rightarrow\Delta'=\left(2m+1\right)^2-\left(1-m\right)\left(3m+1\right)=7m^2+2m\)

a/ Để pt \(f\left(x\right)=0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\7m^2+2m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}< m< 0\)

b/Để \(f\left(x\right)< 0\) vô nghiệm \(\Leftrightarrow f\left(x\right)\ge0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}1-m>0\\7m^2+2m\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 1\\-\frac{2}{7}\le m\le0\end{matrix}\right.\) \(\Rightarrow-\frac{2}{7}\le m\le0\)

c/ Để \(f\left(x\right)\le0\) có vô số nghiệm

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\7m^2+2m>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=1\\\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -\frac{2}{7}\\m>0\end{matrix}\right.\)

Lưu ý: phân biệt bất phương trình có vô số nghiệm và nghiệm đúng với mọi x. Muốn vô số nghiệm thì chỉ cần BPT có 1 khoảng nghiệm nào đó là đủ.

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)