K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0

Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0

Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng

26 tháng 2 2019

khoannnnnnnn, bn: Lê Hồ Trọng Tín ơi:

nếu a=1,b=2,c=1,d=1 thì: \(\frac{1}{2+1+1}=\frac{1}{4}-\frac{1}{3}\ge0???\)

mọe, t-i-k đúng nhầm :(((

29 tháng 8 2016

bacd=dacb vay ...

10 tháng 12 2016

tự làm đi cái này không khó 

23 tháng 10 2018

Bạn có biết không ?  Trong Đây không được nha bạn, nếu được thì và Sub cho Channel mình nha  :  https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber

- Chúc bạn học tốt -

21 tháng 9 2016

25361

9 tháng 12 2021

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\\ \Rightarrow VT=\left(\dfrac{2019a+2020a-2021a}{2019a+2020a-2021a}\right)^3=1^3=1=\dfrac{a^2}{a\cdot a}=VP\)

16 tháng 7 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;b=dk\)

\(\frac{a-c}{a+c}=\frac{b-d}{b+d}\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\Rightarrow\frac{bk-dk}{1.b-d.1}=\frac{bk+dk}{1.b+1.d}\Rightarrow\frac{k.\left(b-d\right)}{1\left(b-d\right)}=\frac{k\left(b+d\right)}{1.\left(b+d\right)}\Rightarrow k=k\left(đpcm\right)\)

Vậy \(\frac{a-c}{a+c}=\frac{b-d}{b+d}\)

b) \(\frac{a}{a+c}=\frac{b}{b+d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{bk}{b}=\frac{bk+dk}{1.b+1.d}\Rightarrow k=k\left(đpcm\right)\)

Vậy \(\frac{a}{a+c}=\frac{b}{b+d}\)

22 tháng 10 2016

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

22 tháng 10 2016

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)