Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a+b}{b}=\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\\\frac{c+d}{d}=\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\end{cases}\left(đpcm\right)}\)
Vậy,......
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(k=\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy k=3
Giải:
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{\left(a+a+a\right)+\left(b+b+b\right)+\left(c+c+c\right)+\left(d+d+d\right)}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)
\(=\frac{3.\left(a+b+c+d\right)}{a+b+c+d}=3\)
\(\Rightarrow k=3\)
Vậy \(k=3\)
Câu 1:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)
\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)
Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Câu 2:
Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)
Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Thay vào P ta được:
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Vậy P = -3
Câu 3:
Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 => a + b = -(c + d)
b + c = -(d + a)
c + d = -(a + b)
d + a = -(b + c)
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;b=dk\)
\(\frac{a-c}{a+c}=\frac{b-d}{b+d}\Rightarrow\frac{a-c}{b-d}=\frac{a+c}{b+d}\Rightarrow\frac{bk-dk}{1.b-d.1}=\frac{bk+dk}{1.b+1.d}\Rightarrow\frac{k.\left(b-d\right)}{1\left(b-d\right)}=\frac{k\left(b+d\right)}{1.\left(b+d\right)}\Rightarrow k=k\left(đpcm\right)\)
Vậy \(\frac{a-c}{a+c}=\frac{b-d}{b+d}\)
b) \(\frac{a}{a+c}=\frac{b}{b+d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\Rightarrow\frac{bk}{b}=\frac{bk+dk}{1.b+1.d}\Rightarrow k=k\left(đpcm\right)\)
Vậy \(\frac{a}{a+c}=\frac{b}{b+d}\)