Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
và \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}\frac{b}{c}\frac{c}{d}=\frac{a}{d}\)
=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)(đpcm)
Ta có : \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
Theo t/c của dãy tỉ số = nhau :
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
=>ĐPCM
a)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\left(1-\frac{b}{a}\right)=\left(1-\frac{d}{c}\right)\)
\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được;
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\)
c)
\(\frac{b}{a}=\frac{d}{c}\Leftrightarrow3+\frac{b}{a}=3+\frac{d}{c}\Leftrightarrow\frac{3a+b}{a}=\frac{3c+d}{c}\Leftrightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
a, Ta co : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)(1)
Xet :\(\frac{a}{a+b}=\frac{c}{c+d}\Rightarrow\frac{a}{c}=\frac{a+b}{c+d}\)(2)
Tu (1) va (2) \(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
b
Ta có : \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a.c.b}{c.b.d}=\frac{a}{d}\) (1)
Áp dụng tình chất dãy tỉ số bằng nhau, ta có :
\(\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\) (2)
Từ (1) và (2) \(\Leftrightarrow\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(ĐPCM\right)\)
Từ \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{c}{b}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}\)
mà \(\left(\frac{a}{c}\right)^3=\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a.c.b}{c.b.d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\)( đpcm )
ta có :
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{c^3}{d^3}\Leftrightarrow\frac{a^3-b^3}{a^3+b^3}=\frac{c^3-d^3}{c^3+d^3}\)
\(\Leftrightarrow\frac{a^3-b^3}{c^3-d^3}=\frac{a^3+b^3}{c^3+d^3}\) vậy ta có điều phải chứng minh