K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

15 tháng 2 2015

mày có thể tự suy nghĩ ra rùi đặt k rùi làm dễ vkl

 

7 tháng 12 2016

bạn đặt a ra dùi tính như thường

3 tháng 6 2017

a) a + b + c + d = 0 \(\Rightarrow a+c=-\left(b+d\right)\)

\(\Rightarrow\)\(\left(a+c\right)^3=-\left(b+d\right)^3\)

\(\Rightarrow\)\(a^3+c^3+3ac\left(a+c\right)=-b^3-d^3-3b\left(b+d\right)\)

\(\Rightarrow\)\(a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)

                                             \(=3\left(ac-bd\right)\left(b+d\right)\)\(\left(dpcm\right)\)

b) - \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\)

\(\Leftrightarrow\left(\sqrt{a-b+c}+\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{c}\right)^2\)

\(\Leftrightarrow b\left(a-b+c\right)=ac\Leftrightarrow\left(b-c\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\b=c\end{cases}\left(1\right)}\)

   - Gia su \(a\le b\le c\), ta có: \(1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\)

\(\Rightarrow a\le3\Rightarrow a=1,2,3\)

      + Nếu a = 1 thì: \(\frac{1}{b}+\frac{1}{c}=0\left(vl\right)\)

      + Nếu a = 2 thì: \(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\le\frac{2}{b}\Rightarrow b\le4\)

\(\Rightarrow a=2;b=c=4\)

      + Nếu a = 3 thì: \(\frac{1}{b}+\frac{1}{c}=\frac{2}{3}\le\frac{2}{b}\Rightarrow b\le3\)

\(\Rightarrow a=b=c=3\)

Cac cap (a, b, c) thoa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)la:

        \(\left(2,4,4\right);\left(4,2,4\right);\left(4,4,2\right);\left(3,3,3\right)\)

Kết hợp với \(\left(1\right)\)ta có nghiệm: \(\left(2,4,4\right);\left(4,4,2\right);\left(3,3,3\right)\)

10 tháng 10 2021

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

10 tháng 10 2021

trả lời :

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

^HT^

1 tháng 11 2018

Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!

14 tháng 10 2018

i don't know

17 tháng 10 2018

=>b^3=abc

=>c^3=bcd

=>a^3+b^3+c^3/b^3+c^3+d^3=a^3+abc+bcd/d^3+abc+bcd

=>