Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\right)\)\(\ge4\)
B=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{c}{b+c}+\frac{d}{c+b}+\frac{a}{d+a}+\frac{b}{a+b}\right)\)\(\ge4\)
A+B=2M+2\(\ge\)8 (M là biểu thức cần chứng minh)
M\(\ge\)2 <=>a=b=c=d
Ta có
\(\frac{a}{b+c}\ge\frac{a+a+d}{a+b+c+d}\)
\(\frac{b}{c+d}\ge\frac{b+b+a}{a+b+c+d}\)
\(\frac{c}{d+a}\ge\frac{c+c+b}{a+b+c+d}\)
\(\frac{d}{a+b}\ge\frac{d+d+c}{a+b+c+d}\)
=> \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)> \(\frac{a+a+d+b+b+a+c+c+b+d+d+c}{a+b+c+d}\)=\(\frac{2a+2b+2c+2d}{a+b+c+d}\)= 2
Chúc bạn học tốt!
TH1 : \(a-b=c-d=0\)
\(\Rightarrow a=b;c=d\)
\(\Rightarrow a+c=b+d\)
TH2 :\(a-b\ne0;c-d\ne0\)
\(\frac{a-b}{b-c}=\frac{c-d}{d-a}\)
\(\Rightarrow\left(a-b\right)\left(d-a\right)=\left(b-c\right)\left(c-d\right)\)
\(\Rightarrow ad-a^2-bd+ab=bc-bd-c^2+cd\)
\(\Rightarrow ad-a^2+ab=bc-c^2+cd\)
\(\Rightarrow a\left(d-a+b\right)=c\left(b-c+d\right)\)
Với \(d-a+b=b-c+d=0\)
\(\Rightarrow d-a+b-\left(d+b\right)=\left(b-c+d\right)-\left(d+b\right)\)
\(\Rightarrow a=c\)
Với \(d-a+b\ne0;b-c+d\ne0\)
\(\Rightarrow a=c\)
Vậy ...
Áp dụng BĐT Svác - xơ.
\(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)
\(=\frac{a^2}{ba+ca}+\frac{b^2}{cb+db}+\frac{c^2}{dc+ac}+\frac{d^2}{ad+bd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\)(1)
Xét: \(\left(a+b+c+d\right)^2-2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
\(=a^2+b^2+c^2+d^2-2bd-2ac\)
\(=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
=> \(\left(a+b+c+d\right)^2\ge2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
=> \(\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\ge2\)(2)
Từ ( 1); (2) => \(F\ge2\)
Dấu "=" xảy ra <=> a = b = c = d.
\(M\ge\frac{\left(1+1+1+1\right)^2}{3\left(a+b+c+d\right)}=\frac{16}{3\left(a+b+c+d\right)}\) ( bdt Cauchy dạng Engel)
Mặt khác, có \(\left(a+b+c+d\right)^2\le4\left(a^2+b^2+c^2+d^2\right)\le16\) ( bdt Bunykovski)
\(\Leftrightarrow a+b+c+d\le4\)
\(\Rightarrow M\ge\frac{16}{3\left(a+b+c+d\right)}\ge\frac{16}{12}=\frac{4}{3}\)
Dấu "=" : x =y =z = 1
\(\frac{a-b}{b-c}=\frac{c-d}{d-a}=\frac{a-b+c-d}{b-c+d-a}=\frac{a-b+c-d}{-\left(a-b+c-d\right)}=-1\)
\(\Rightarrow\frac{a-b}{b-c}=-1\Rightarrow a-b=c-b\Rightarrow a=c\)