K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

(1/a+1/b+1/c)=2

=>(1/a+1/b+1/c)2=22=4

=>1/a2+1/b2+1/c2+2(1/ab+1/bc+1/ca)=4

=>2(1/ab+1/bc+1/ca)=4-(1/a2+1/b2+1/c2)=4-2=2 

=>1/ab+/bc+1/ca=1

=>(a+b+c)/abc=1

=>a+b+c=abc

25 tháng 1 2017

CO BAN NAO BIET THANG NAO TEN SUPER SAYGIAN GON KHONG NEU BIET THI NOI CHO MINH BIET NHA

7 tháng 2 2020

\(\Rightarrow\frac{a+b+c}{abc}=\frac{1}{9}\Leftrightarrow\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=\frac{2}{9}\)

Lại có \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=1\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=1\)

Vậy 1/a^2+1/b^2+1/c^2=1-2/9=7/9 ( Sê đài )

7 tháng 2 2020

ko bt có sê đài ko nhưng thanks

Bài 2 :

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)

( Do \(a+b+c=abc\) )

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)

P/s : Cho hỏi bài 1 có a,b,c > 0 không ?

Khuyến mãi thêm bài 1 :))

Áp dụng BĐT AM-GM ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)

Tương tự ta có :

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)

Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

6 tháng 7 2016

Trả lời hộ mình đi

22 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)

=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

=>\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\)

=>\(\frac{c+a+b}{abc}=1\)

=> a+b+c=abc (đpcm)

22 tháng 11 2016

Từ \(\left(1\right)\) suy ra : \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

Do \(\left(2\right)\) nên \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1,\) suy ra \(\frac{a+b+c}{abc}=1\\.\)

Do đó \(a+b+c=abc\)

1 tháng 11 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+c^2b+c^2a=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

So ez

....

NV
21 tháng 4 2019

\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2a}}=\frac{2}{b}\); \(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\); \(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\)

Cộng lại:

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi \(a=b=c\)

\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v 

\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)

tương tự 2 cái kia cộng lại t có bđt cần cm