\(f\left(x\right)=ax^2+bx+c\). Biết \(f\left(-3\right)=156\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

a) \(\hept{\begin{cases}f\left(2\right)=156\\f\left(-3\right)=156\\f\left(-1\right)=132\end{cases}\Rightarrow\hept{\begin{cases}4a+2b+c=156\\9a-3b+c=156\\a-b+c=132\end{cases}\Rightarrow}\hept{\begin{cases}4a+2b+132-a+b=156\\9a-3b+132-a+b=156\\c=132-a+b\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}3a+3b=24\\8a-2b=24\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a+b=8\\-4a+b=-12\\c=132-a+b\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}5a=20\\b=8-a\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=4\\c=132\end{cases}}}\)

b) \(f\left(x\right)=4x^2+4x+132=4x^2+2x+2x+1+131=2x\left(2x+1\right)+\left(2x+1\right)+131\)

\(=\left(2x+1\right)^2+131\)

\(\left(2x+1\right)^2\ge0\forall x\Rightarrow f\left(x\right)\ge131\forall x\). Vậy \(f\left(x\right)\ne0\forall x\)

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

15 tháng 6 2017

a, f(10x) = k.(10x) = 10.(kx) = 10.f(x)

b, f(x1 + x2) = k(x1 + x2) = kx1 + kx2 = f(x1) + f(x2)

c, f(x1 - x2) = k(x1 - x2) = kx1 - kx2 = f(x1) - f(x2)

29 tháng 2 2020

ĐỀ bài em sai nhé

Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)

suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)

\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)

\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0) 

NV
14 tháng 2 2020

\(f\left(-1\right)=a+c-b\)

\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)

\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ta có:

$f(4)=16a+4b+c$

$f(-2)=4a-2b+c$

Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$

$\Rightarrow f(-2)=-f(4)$

$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$

Ta có đpcm.